|本期目录/Table of Contents|

[1]廖旭,李鸿晶,孙广俊.弹性水平成层场地稳态波动的谱单元模拟[J].南京工业大学学报(自然科学版),2013,35(01):1-52.[doi:10.3969/j.issn.1671-7627.2013.01.011]
 LIAO Xu,LI Hongjing,SUN Guangjun.Simulation of steady-state wave motion in the linear elastic horizontal site using spectral element method[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2013,35(01):1-52.[doi:10.3969/j.issn.1671-7627.2013.01.011]
点击复制

弹性水平成层场地稳态波动的谱单元模拟()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
35
期数:
2013年01期
页码:
1-52
栏目:
出版日期:
2013-01-20

文章信息/Info

Title:
Simulation of steady-state wave motion in the linear elastic horizontal site using spectral element method
文章编号:
1671-7627(2013)01-0052-05
作者:
廖旭李鸿晶孙广俊
南京工业大学 土木工程学院,江苏 南京 210009
Author(s):
LIAO Xu LI HongjingSUN Guangjun
College of Civil Engineering, Nanjing University of Technology, Nanjing 210009,China
关键词:
稳态波动 谱元法 逐步微分积分法 高精度方法 高效率
Keywords:
steady-state wave motion spectral element method differential quadrature method high accuracy method computational efforts
分类号:
TU435
DOI:
10.3969/j.issn.1671-7627.2013.01.011
文献标志码:
A
摘要:
采用谱单元法模拟弹性水平成层场地的一维稳态波动反应。在空间域采用谱单元离散,在时间域采用逐步微分求积法(DQ法),形成整体的空间域-时域计算格式,导出了计算表达式,并进行了数值实验。数值实验表明,采用谱单元法模拟弹性水平成层场地的一维稳态波动反应问题具有较高的计算精度。在控制精度的前提下,可以通过适当放宽空间以及时间网格的尺度来达到提高计算效率的目的。谱单元法提供了有限元方法以外的另一条解决问题途径,可望满足工程场地地震动模拟对于计算精度和计算效率的需求。
Abstract:
One-dimensional steady-state wave motion in the horizontal layer site was numerically simulated using spectral element method(SEM).The site was discreted in space domain by spectral elements, and the time-strepping procedure established on the basis of differential quadrature(DQ)rule was employed for the solution of dynamic equation.The corresponding formula were deduced.The results from numerical tests showed that the suggested procedure could gain higher accuraey for analysis of the wave propagation in the horizontal layer site.So the computational effects would be decreased by properly enlarging the element scales in space or time domain.

参考文献/References:

[1] 白建方.场地地震反应分析导论[M].北京:中国铁道出版社,2010.
[2] Funaro D.Domain decomposition methods for pseudospectral approximations-part I,second order equations in one dimension[J].Numerische Mathematic,1988,52(3):329-344.
[3] Bernadi C,Girault V,Maday Y.Mixed spectral element approximation of the Navier-Stokes equations in the stream-function and vorticity formulation[J].IMA Journal of Numerical Analysis,1992,12:565-608.
[4] Guo B Y.Spectral methods and their applications[M].Singapore:World Scientific,1998.
[5] Zampieri E,Pavarino L F.Approximation of acoustic waves by explicit Newmark’s schemes and spectral element methods[J].Journal of Computational and Applied Mathematics,2006,185:308-325.
[6] 王秀明,Seriani G,林伟军.利用谱元法计算弹性波场的若干理论问题[J].中国科学:G辑,2007,37(1):41-59.
[7] Bert C W,Malik M.Differential quadrature method in computational mechanics:a review[J].Applied Mechanics Reviews,1996,49(1):1-28.
[8] Kang K,Bert C W,Striz A G.Vibration analysis of horizontally curved beams with warping using DQM[J].Journal of Structure Engineering,1996,122(6):657-662.
[9] de Rose M A,Franciosi C.Exact and approximate dynamic analysis of circular arches using DQM[J].International Journal of Solids and Structures,2000,37:1103-1117.
[10] Nie G J,Zhong Z.Elastio-plastic analysis of beams by differential quadrature method[J].Journal of Engineering Mechanics,2005,22(1):59-62.
[11] Fung T C.Solving initial value problems by differential quadrature method:part 1:first-order equations[J].International Journal for Numerical Methods in Engineering,2001,50:1411-1427.
[12] Fung T C.Solving initial value problems by differential quadrature method:part 2:second-and higher-order equations[J].International Journal for Numerical Methods in Engineering,2001,50:1429-1454.
[13] 李鸿晶,王通.结构地震反应分析的逐步微分积分方法[J].力学学报,2011,43(2):430-435.
[14] 李鸿晶,廖旭,王通.结构地震反应DQ解法的两种数值格式[J].应用基础与工程科学学报,2011,19(5):758-766.

备注/Memo

备注/Memo:
收稿日期:2012-05-09
基金项目:国家自然科学基金重大研究计划(90815013); 江苏省土木工程博士研究生科技创新基金
作者简介:廖旭(1986—),男,江苏盐城人,博士生,主要研究方向为生命线地震工程; 李鸿晶(联系人),教授,E-mail: harbiner@163.com..
更新日期/Last Update: 2013-01-20