|本期目录/Table of Contents|

[1]崔梦楠,杨晓宁.超临界CO2中表面钝化Au纳米粒子的分子动力学模拟[J].南京工业大学学报(自然科学版),2013,35(03):6-10.[doi:10.3969/j.issn.1671-7627.2013.03.002]
 CUI Mengnan,YANG Xiaoning.Molecular dynamics simulation of passivated Au nanoparticles dispersed in supercritical CO2[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2013,35(03):6-10.[doi:10.3969/j.issn.1671-7627.2013.03.002]
点击复制

超临界CO2中表面钝化Au纳米粒子的分子动力学模拟()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
35
期数:
2013年03期
页码:
6-10
栏目:
出版日期:
2013-05-20

文章信息/Info

Title:
Molecular dynamics simulation of passivated Au nanoparticles dispersed in supercritical CO2
文章编号:
1671-7627(2013)03-0006-05
作者:
崔梦楠杨晓宁
南京工业大学 化学化工学院 材料化学工程国家重点实验室,江苏 南京 210009
Author(s):
CUI MengnanYANG Xiaoning
State Key Laboratory of Materials-Oriented Chemical Engineering,College of Chemistry and Chemical Engineering,Nanjing University of Technology,Nanjing 210009,China
关键词:
Au纳米粒子 超临界CO2 分散 分子动力学模拟
Keywords:
gold nanoparticle supercritical CO2 dispersion molecular dynamics simulation
分类号:
O647
DOI:
10.3969/j.issn.1671-7627.2013.03.002
文献标志码:
A
摘要:
通过分子动力学模拟方法研究了353.15 K下多个氟化的硫醇烷烃钝化的Au纳米粒子在超临界CO2中的分散行为。结果表明:在单分子自组装层的钝化下,Au纳米粒子在超临界CO2溶剂中可以得到稳定分散。通过对径向分布函数、有效平均力势能、渗透压第二维里系数等数据进行分析发现,在超临界流体中,自组装单分子保护层(SAM)的存在可以有效阻止纳米粒子间的团聚,增加溶剂密度和链长,可以提高纳米粒子之间的相互排斥作用,从而有利于纳米粒子的分散。
Abstract:
Molecular dynamics simulations were carried out to investigate the dispersion behavior of fluorinated alkanethiols passivated gold nanoparticles in supercritical CO2 at 353.15 K.Results indicated that the gold nanoparticles passivated with self-assembled monolayer(SAM)could be stably dispersed in the supercritical dioxide solvent.By analyzing the radial distribution function,effective pair potential of mean force and osmotic second Virial coefficient,it was observed that in supercritical fluid,the existence of SAM could effectively prevent reunion between the nanoparticles.The increase of solvent density and chain length could improve the mutual repulsion interaction between nanoparticles,thus it was help for the dispersion of nanoparticles.

参考文献/References:

[1] Zeng S W,Yong K T,Roy I,et al.A review on functionalized gold nanoparticles for biosensing applications[J].Plasmonics,2011,6(3):491-506.
[2] Raigoza A F,Villalba D A,Kautz N A,et al.Structure and self-assembly of sequentially adsorbed coronene/octanethiol monolayers[J].Surf Sci,2010,604(19/20):1584-1590.
  
[3] Dalvi V H,Srinivasan V,Rossky P J.Understanding the relative effectiveness of alkanethiol ligands in dispersing nanoparticles in supercritical carbon dioxide and ethane[J].J Phys Chem C,2010,114(37):15562-15573.
[4] Schatz G.Using theory and computation to model nanoscale properties[J].Proc Natl Acad Sci USA,2007,104(17):6885-6892.
[5] Liu J,Gao Y Y,Cao D P,et al.Nanoparticle dispersion and aggregation in polymer nanocomposites:insights from molecular dynamics simulation[J].Langmuir,2011,27(12):7926-7933.
[6] Lin J Q,Zhang H W,Chen Z,et al.Simulation study of aggregations of monolayer-protected gold nanoparticles in solvents[J].J Phys Chem C,2011,115(39):18991-18998.
[7] Garzón I L,Michaelian K,Beltrón M R,et al.Lowest energy structures of gold nanoclusters[J].Phys Rev Lett,1998,81(8):1600-1603.
[8] Yang Z,Yang X N,Xu Z J,et al.Molecular simulations of structures and solvation free energies of passivated gold nanoparticles in supercritical CO2[J].J Chem Phys,2010,133(9):094702.
[9] Senapati S,Keiper J S,Desimone J M,et al.Structure of phosphate fluorosurfactant based reverse micelles in supercritical carbon dioxide[J].Langmuir,2002,18(20):7371-7376.
[10] Schapotschnikow P,Vlugt T J H.Soft hedgehogs on coarse carpets:a molecular simulation study of capped nanocrystals[J].J Phys Chem C,2010,114(6):2531-2537.
[11] Tay K,Bresme F.Computer simulations of two dimensional gold nanoparticle arrays:the influence of core geometry[J].Mol Simul,2005,31(6/7):515-526.
[12] Hu Y,Wu B,Xu Z J,et al.Solvation structure and dynamics for passivated Au nanoparticle in supercritical CO2:a molecular dynamic simulation[J].J Colloid Interface Sci,2011,353(1):22-29.
[13] Luedtke W D,Landman U.Structure and thermodynamics of self-assembled monolayers on gold nanocrystallites[J].J Phys Chem B,1998,102(34):6566-6572.
[14] Saunders A E,Korgel B A.Second virial coefficient measurements of dilute gold nanocrystal dispersions using[J].J Phys Chem B,2004,108(43):16732-16738.
[15] Striolo A,Mccabe C,Cummings P T.Effective interactions between polyhedral oligomeric sislesquioxanes dissolved in normal hexadecane from molecular simulation[J].Macromolecules,2005,38(21):8950-8959.

相似文献/References:

[1]孙玲,杨晓宁.Au纳米粒子在超临界CO2中结构和相互作用[J].南京工业大学学报(自然科学版),2012,34(04):69.[doi:10.3969/j.issn.1671-7627.2012.04.014]
 SUN Ling,YANG Xiaoning.Structure and interaction of Au nanoparticles in supercritical CO2[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2012,34(03):69.[doi:10.3969/j.issn.1671-7627.2012.04.014]

备注/Memo

备注/Memo:
收稿日期:2012-05-04
基金项目:国家自然科学基金(21176114, 20976079); 江苏省自然科学基金(BK2009359)
作者简介:崔梦楠(1985—),女,河南安阳人,硕士生,主要研究方向为分子模拟; 杨晓宁(联系人),教授,E-mail: Yangxia@njut.edu.cn..
更新日期/Last Update: 2013-05-31