|本期目录/Table of Contents|

[1]王璐,周剑秋,张舒.纳晶金属中纳米孔洞增长的微观力学模型[J].南京工业大学学报(自然科学版),2013,35(06):17-22.[doi:10.3969/j.issn.1671-7627.2013.06.004]
 WANG Lu,ZHOU Jianqiu,ZHANG Shu.Micro-mechanical model of nanovoid growth in nanocrystalline metals[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2013,35(06):17-22.[doi:10.3969/j.issn.1671-7627.2013.06.004]
点击复制

纳晶金属中纳米孔洞增长的微观力学模型()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
35
期数:
2013年06期
页码:
17-22
栏目:
出版日期:
2013-11-20

文章信息/Info

Title:
Micro-mechanical model of nanovoid growth in nanocrystalline metals
文章编号:
1671-7627(2013)06-0017-06
作者:
王璐周剑秋张舒
南京工业大学 机械与动力工程学院,江苏 南京 210009
Author(s):
WANG LuZHOU JianqiuZHANG Shu
College of Mechanical and Power Engineering,Nanjing University of Technology,Nanjing 210009,China
关键词:
孔洞增长 位错 晶界 纳米晶体
Keywords:
void growth dislocation gain boundary nanocrystalline
分类号:
TB381
DOI:
10.3969/j.issn.1671-7627.2013.06.004
文献标志码:
A
摘要:
建立双向等轴应力条件下纳晶金属三晶交处纳米孔洞增长的理论模型。模型中认为孔洞的增长是由于位错从孔洞表面发射而引起的。通过计算得到了纳米孔洞附近的应力场、位错发射所需的临界应力以及从孔洞表面发射的最大位错数。结果表明:在纳晶金属中,晶界对孔洞的增长起着阻碍作用,晶粒尺寸越小,纳米孔洞越难增长。
Abstract:
A theoretical model was established to describe the growth of nanovoid at triple junction of nanocrystalline metal under equal biaxial stress.In the model,it was considered that void growth was caused by the emission of dislocations on void surface.Stress field around nanovoid,critical stress required for dislocation emission and maximum number of dislocations emitted from the surface of nanovoid were calculated.Results showed that grain boundary was the obstacle for void growth; the smaller the grain size was,the harder the nanovoid.

参考文献/References:

[1] Rice J R,Tracey D M.On the ductile enlargement of voids in triaxial stress fields[J].J Mech Phys Solids,1969,17(3):201-217.
[2] Needleman A.Void growth in an elastic-plastic medium[J].J Appl Mech,1972,39(4):964-970.
[3] Gurson A L.Continuum theory of ductile rupture by void nucleation and growth:I.yield criterion and flow rules for porous materials[J].J Eng Mater Technol,1977,99(1):2-15.
[4] Bandstra J P,Koss D A,Geltmacher A,et al.Modeling void coalescence during ductile fracture of a steel[J].Mater Sci Eng A,2004,366(2):269-281.
[5] Du N,Bower A F,Krajewski P E.Numerical simulations of void growth in aluminum alloy AA5083 during elevated temperature deformation[J].Mater Sci Eng A,2010,527(18/19):4837-4846.
[6] Fischer F D,Antretter T.Deformation,stress state and thermodynamic force for a growing void in an elastic-plastic material[J].Int J Plast,2009,25(10):1819-1832.
[7] Hu L,Zhou J.Void evolution in nanocrystalline metal film under uniform tensile stress[J].Mater Sci Eng A,2010,528(3):860-867.
[8] Seppala E T,Belak J,Rudd R E.Onset of void coalescence during dynamic fracture of ductile metals[J].Phys Rev Lett,2005,93(24):245503-245507.
[9] Holian B L,Lomdahl P S.Plasticity induced by shock waves in nonequilibrium molecular dynamics simulations[J].Science,1998,280:2085-2088.
[10] Rudd R E,Belak J F.Void nucleation and associated plasticity in dynamic fracture of polycrystalline copper:an atomistic simulation[J].Comput Mater Sci,2002,24(1/2):148-153.
[11] Seppala E T,Belak J,Rudd R E.Onset of void coalescence during dynamic fracture of ductile metals[J].Phys Rev Lett,2004,93(24):245503-245507.
[12] Seppala E T,Belak J,Rudd R E.Three-dimensional molecular dynamics simulations of void coalescence during dynamic fracture of ductile metals[J].Phys Rev B,2005,71(6):064112-064122.
[13] Lubarda V A,Schneider M S,Kalantar D H,et al.Void growth by dislocation emission[J].Acta Mater,2004,52(6):1397-1408.
[14] Lubarda V A.Emission of dislocations from nanovoids under combined loading[J].Int J Plast,2011,27(2):181-200.
[15] Gurtin M E,Weissmuller J,Larché F.A general theory of curved deformable interfaces in solids at equilibrium[J].Philos Mag A,1998,78(5):1093-1109.
[16] Ovid’ko I A,Sheinerman A G.Grain size effect on crack blunting in nanocrystalline materials[J].Scripta Mater,2009,60(8):627-630.
[17] Ovid’ko I A,Sheinerman A G.Ductile vs.brittle behavior of pre-cracked nanocrystalline and ultrafine-grained materials[J].Acta Mater,2010,58(16):5286-5294.

相似文献/References:

[1]张舒,周剑秋,王璐,等.拉伸轴与孪晶界角度对纳米孪晶材料变形行为的影响[J].南京工业大学学报(自然科学版),2014,36(03):26.[doi:10.3969/j.issn.1671-7627.2014.03.006]
 ZHANG Shu,ZHOU Jianqiu,WANG Lu,et al.Effects of the angle between loading axis and twin boundary on the deformation behavior of nanotwinned materials[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2014,36(06):26.[doi:10.3969/j.issn.1671-7627.2014.03.006]

备注/Memo

备注/Memo:
收稿日期:2013-03-25
基金项目:国家自然科学基金(11272143,10872087,10502025); 江苏省普通高校研究生科研创新计划(CXZZ12_0422)
作者简介:王璐(1988—),男,安徽宿州人,博士,主要研究方向为微纳米材料损伤及失效; 周剑秋(联系人),教授,E-mail:zhouj@njut.edu.cn..
更新日期/Last Update: 2013-11-30