|本期目录/Table of Contents|

[1]吴夏芫,宋天顺,朱旭君,等.植物沉积型微生物燃料电池的基础研究[J].南京工业大学学报(自然科学版),2013,35(06):91-96.[doi:10.3969/j.issn.1671-7627.2013.06.019]
 WU Xiayuan,SONG Tianshun,ZHU Xujun,et al.Basic characteristics of plant-sediment microbial fuel cell[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2013,35(06):91-96.[doi:10.3969/j.issn.1671-7627.2013.06.019]
点击复制

植物沉积型微生物燃料电池的基础研究()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
35
期数:
2013年06期
页码:
91-96
栏目:
出版日期:
2013-11-20

文章信息/Info

Title:
Basic characteristics of plant-sediment microbial fuel cell
文章编号:
1671-7627(2013)06-0091-06
作者:
吴夏芫1宋天顺1朱旭君2周楚新1韦萍1
1.南京工业大学 生物与制药工程学院 国际微生物能源研究所,江苏 南京 210009; 2.南京农业大学 园艺学院,江苏 南京 210095
Author(s):
WU Xiayuan1 SONG Tianshun1 ZHU Xujun2 ZHOU Chuxin1 WEI Ping1
1. Institute of Joint Bioenergy, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, China; 2. College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
关键词:
沉积型微生物燃料电池 驯化 阳极材料 根系分泌物
Keywords:
sediment microbial fuel cell(SMFC) acclimation anode material root exudates
分类号:
TM911.45
DOI:
10.3969/j.issn.1671-7627.2013.06.019
文献标志码:
A
摘要:
以湿地植物仙羽蔓绿绒构建植物沉积型微生物燃料电池(Plant-SMFC),分别考察阳极不同驯化方式及电极材料对电池基础特性的影响。结果表明:Plant-SMFC以阳极协同驯化方式富集产电菌时,电池启动期较自然驯化方式缩短了3 d,产电水平亦明显提高,最大输出功率密度(2.84 mW/m2)为自然驯化方式的3.2倍,且该驯化方式对植物生长影响不大; 活性炭纤维毡作为阳极电极材料效果优于石墨毡,电池启动期缩短了8 d,最大输出功率密度(5.78 mW/m2)提高了1倍,同时更利于植物的生长繁殖,运行60 d后收获植物干质量为2.5 g; 高效液相色谱(HPLC)分析证明仙羽蔓绿绒根系分泌物中有机酸主要为顺丁烯二酸、反丁烯二酸、柠檬酸等小分子有机酸,它们均易被阳极产电菌利用以维持电池的稳定产电。
Abstract:
As a kind of marshy plant, Philodendron cv.Xanadu was applied to construct a plant-sediment microbial fuel cell(Plant-SMFC). The time of startup reduced by 3 d when using synergetic acclimation instead of natural acclimation for anodic electricigens, and the highest power density(2.84 mW/m2)was 3.2 times than that of the latter. Results proved that there was no obvious harm on the growth of plant. The activated carbon fiber felt as anode material was better than the graphite one for the shorter startup time that was reduced by 8 d than the latter and higher power density of 5.78 mW/m2,1 time higher than the latter, and further more, the former material was more helpful for the growth of plant with the dry weight of 2.5 g after 60 d. The constituents of organic acids in the root exudates were mainly maleic acid, fumaric acid and citric acid to be analyzed by high performance liquid chromatography(HPLC).They were all low-molecular-weight organic acid that easy oxidated by anodic electricigens to generate electron.

参考文献/References:

[1] Kouroussis D,Karimi S.Alternative fuels in transportation[J].Bull Sci Technol Soc,2006,26(4):346-355.
[2] Park D H,Zeikus J G.Improved fuel cell and electrode designs for producing electricity from microbial degradation[J].Biotechnol Bioeng,2003,81(3):348-355.
[3] Gil G C,Chang I S,Kim B H,et al.Operational parameters affecting the performance of a mediatorless microbial fuel cell[J].Biosen Bioelectron,2003,18(4):327-334.
[4] Tender L M,Gray S A,Groveman E,et al.The first demonstration of a microbial fuel cell as a viable power supply:powering a meteorological buoy[J].J Power Sources,2008,179(2):571-575.
[5] Donovan C,Dewan A,Heo D.Batteryless,wireless sensor powered by a sediment microbial fuel cell[J].Environ Sci Technol,2008,42:8591-8596.
[6] De Schamphelaire L,Rabaey K,Boeckx P,et al.Outlook for benefits of sediment microbial fuel cells with two bio-electrodes[J].Microb Biotechnol,2008,1(6):446-462.
[7] Hong S W,Chang I S,Choi Y S,et al.Responses from freshwater sediment during electricity generation using microbial fuel cells[J].Bioprocess Biosyst Eng,2009,32:389-395.
[8] Hong S W,Kim H J,Choi Y S,et al.Field experiments on bioelectricity production from lake sediment using microbial fuel cell technology[J].Bull Korean Chem Soc,2008,29(11):2189-2194.
[9] De Schamphelaire L,van den Bossche L,Dang H S,et al.Microbial fuel cells generating electricity from rhizodeposits of rice plants[J].Environ Sci Technol,2008,42:3053-3058.
[10] Kaku N,Yonezawa N,Kodama Y,et al.Plant microbe cooperation for electricity generation in a rice paddy field[J].Appl Microbiol Biotechnol,2008,79:43-49.
[11] Bond D R,Lovley D R.Electricity production by Geobacter sulfurreducens attached to electrodes[J].Appl Environ Microbiol,2003,69(3):1548-1555.
[12] Bond D R,Holmes D E,Tender L M,et al.Electrode-reducing microorganisms that harvest energy from marine sediments[J].Science,2002,295:483-485.
[13] Kim H J,Park H S,Hyun M S,et al.A mediator-less microbial fuel cell using a metal reducing bacterium,Shewanella putrefaciense[J].Enzyme Microb Technol,2002,30(2):145-152.
[14] Chaudhuri S K,Lovley D R.Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells[J].Nat Biotechnol,2003,21(10):1229-1232.
[15] Dumas C,Basseguy R,Bergel A.Electrochemical activity of Geobacter sulfurreducens biofilms on stainless steel anodes[J].Electrochim Acta,2008,53(16):5235-5241.
[16] Xing D F,Zuo Y,Cheng S A,et al.Electricity generation by Rhodopseudomonas palustris DX-1[J].Environ Sci Technol,2008,42(11):4146-4151.
[17] Zuo Y,Xing D F,Regan J M,et al.Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell[J].Appl Environ Microbiol,2008,74(10):3130-3137.
[18] Rabaey K,Boon N,Hofte M,et al.Microbial phenazine production enhances electron transfer in biofuel cells[J].Environ Sci Technol,2005,39(9):3401-3408.
[19] Park H S,Kim B H,Kim H S,et al.A novel electrochemically active and Fe(Ⅲ)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell[J].Anaerobe,2001,7(6):297-306.
[20] Zhen H,Haibo S H,Largus T A.Increased power production from a sediment microbial fuel cell with a rotating cathode[J].Biosens Bioelectron,2007,22:3252-3255.
[21] 张福锁.土壤-植物营养研究新动态:第一卷[M].北京:北京农业大学出版社,1992:64-72.
[22] Cheng W,Coleman D C,Carroll C R,et al.In situ measurement of root respiration and soluble C concentrations in the rhizosphere[J].Soil Biol Biochem,1993,25:1189-1196.
[23] 罗明,陈新红,李兢,等.种保素对几种根际微生物效应的影响[J].生态学杂志,2000,19(3):69-72.
[24] Steinbusch K J J,Strik D P B T B,Hamelers H V M.Coulombic efficiency in a PMFC,effect of exudates type and concentration,and oxygen[J].Commun Agric Appl Biol Sci,2011,76(2):71-74.

备注/Memo

备注/Memo:
收稿日期:2012-12-20
基金项目:国家自然科学基金(51209116); 国家重点基础研究发展计划(973计划)(2009CB724700)
作者简介:吴夏芫(1984—),女,江西宜春人,助理研究员,硕士,主要研究方向为微生物能源; 周楚新(联系人),教授,E-mail:ijbtg2009@163.com..
更新日期/Last Update: 2013-11-30