|本期目录/Table of Contents|

[1]卫灵君,朱云峰,李李泉.Ti1.0Mn0.9V1.1的添加对氢化燃烧合成复合机械球磨制备Mg95Ni5放氢性能的影响[J].南京工业大学学报(自然科学版),2014,36(01):1-6.[doi:10.3969/j.issn.1671-7627.2014.01.001]
 WEI Lingjun,ZHU Yunfeng,LI Liquan.Effects of Ti1.0Mn0.9V1.1 on hydrogen desorption property of Mg95Ni5 prepared by hydriding combustion synthesis and mechanical milling[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2014,36(01):1-6.[doi:10.3969/j.issn.1671-7627.2014.01.001]
点击复制

Ti1.0Mn0.9V1.1的添加对氢化燃烧合成复合机械球磨制备Mg95Ni5放氢性能的影响()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
36
期数:
2014年01期
页码:
1-6
栏目:
出版日期:
2014-01-20

文章信息/Info

Title:
Effects of Ti1.0Mn0.9V1.1 on hydrogen desorption property of Mg95Ni5 prepared by hydriding combustion synthesis and mechanical milling
文章编号:
1671-7627(2014)01-0001-06
作者:
卫灵君朱云峰李李泉
南京工业大学 材料科学与工程学院,江苏 南京 210009
Author(s):
WEI LingjunZHU YunfengLI Liquan
College of Materials Science and Engineering,Nanjing University of Technology,Nanjing 210009,China
关键词:
镁基储氢材料 氢化燃烧合成 机械球磨 放氢性能 氢泵作用
Keywords:
Mg-based hydrogen storage materials hydriding combustion synthesis mechanical milling hydrogen desorption property hydrogen pump
分类号:
TG146.2
DOI:
10.3969/j.issn.1671-7627.2014.01.001
文献标志码:
A
摘要:
采用氢化燃烧合成法(HCS)制备Mg95Ni5+x% Ti1.0Mn0.9V1.1(x=0、10、20和30)复合物,然后将氢化燃烧合成产物进行机械球磨(MM)得到镁基复合储氢材料。采用压力-浓度-温度(pcT)曲线、X线衍射仪(XRD)和扫描电子显微镜(SEM)研究材料的放氢性能、相结构、表面形貌以及颗粒化学成分。研究表明:添加30%(质量分数)Ti1.0Mn0.9V1.1可使Mg95Ni5的HCS+MM产物的放氢性能达到最佳,在523 K时1 200 s内就可完全放氢,放氢量达5.71%,同时放氢反应的表观活化能从148.20 kJ/mol降低到129.69 kJ/mol,这主要归因于Ti1.0Mn0.9V1.1的添加提高了氢在产物中的扩散能力以及对镁基氢化物放氢的氢泵作用。
Abstract:
Mg95Ni5+x% Ti1.0Mn0.9V1.1(x=0,10,20, and 30)composites were prepared by hydriding combustion synthesis(HCS)and the HCS products were mechanically milled(MM)to obtain Mg-based hydrogen-storage composites.The dehydriding properties,phase structure,surface morphology, and particle composition were studied by pressure-composition-temperature(pcT),X-ray diffraction(XRD)and scanning electron microscopy(SEM).Results showed that addition of 30%(mass fraction)Ti1.0Mn0.9V1.1 exhibited the best hydrogen desorption property for the HCS+MM product of Mg95Ni5,which could completely desorb 5.71% H2 in 1 200 s at 523 K.The apparent dehydrogenation activation energy of the system was decreased to 129.69 kJ/mol from 148.20 kJ/mol of Mg95Ni5.The improvement of the hydrogen desorption property could be attributed to the enhancement of hydrogen diffusion and the “hydrogen pumping” of Ti1.0Mn0.9V1.1.

参考文献/References:

[1] 毛宗强.氢能:21世纪的绿色能源[M].北京:化学工业出版社,2005.
[2] Schlapbach L,Züttel A.Hydrogen-storage materials for mobile applications[J].Nature,2001,414:253-258.
[3] Oumellal Y,Rougier A,Nazri G A,et al.Metal hydrides for lithium-ion batteries[J].Nature Materials,2008,7(11):916-921.
[4] Aguey-Zinsou K F,Ares-Fernández J R.Hydrogen in magnesium:new perspectives toward functional stores[J].Energy & Environmental Science,2010,3(5):526-543.
[5] Zhang Q A,Zhang L X,Wang Q Q.Crystallization behavior and hydrogen storage kinetics of amorphous Mg11Y2Ni2 alloy[J].Journal of Alloys and Compounds,2013,551:376-381.
[6] Liu T,Qiu C G,Zhang T W,et al.Synthesis of Mg@Mg17Al12 ultrafine particles with superior hydrogen storage properties by hydrogen plasma-metal reaction[J].Journal of Materials Chemistry,2012,22(37):19831-19839.
[7] Grzech A,Lafont U,Magusin P C M M,et al.Microscopic study of TiF3 as hydrogen storage catalyst for MgH2[J].Journal of Physical Chemistry C,2012,116(49):26027-26035.
[8] Liu G,Wang Y J,Xu C C,et al.Excellent catalytic effects of highly crumpled grapheme nanosheets on hydrogenation/dehydrogenation of magnesium hydride[J].Nanoscale,2013,5(3):1074-1081.
[9] Jeon K J,Moon H R,Ruminski A M,et al.Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts[J].Nature Materials,2011,10(4):286-290.
[10] Zhu C Y,Akiyama T.Zebra-striped fibers in relation to the H2 sorption properties for MgH2 nanofibers produced by a vapor-solid process[J].Crystal Growth Design,2012,12(8):4043-4052.
[11] Lu J,Choi Y J,Fang Z Z,et al.Hydrogen storage properties of nanosized MgH2-0.1TiH2 prepared by ultrahigh-energy-high-pressure milling[J].Journal of the American Chemical Society,2009,131(43):15843-15852.
[12] Cuevas F,Korablov D,Latroche M.Synthesis,structural and hydrogenation properties of Mg-rich MgH2-TiH2 nanocomposites prepared by reactive ball milling under hydrogen gas[J].Physical Chemistry Chemical Physics,2012,14(3):1200-1211.
[13] Akiyama T,Isogai H,Yagi J.Hydriding combustion synthesis for the production of hydrogen storage alloy[J].Journal of Alloys and Compounds,1997,252(1/2):L1-L4.
   [14] Liu D M,Zhu Y F,Li L Q.Crystal defect analysis and surface characteristics of Mg2NiH4 produced by hydriding combustion synthesis[J].International Journal of Hydrogen Energy,2007,32(13):2417-2421.
[15] Wei L J,Zhu Y F,Li L Q.Effect of SiC on hydrogen storage properties of Mg95Ni5 prepared by hydriding combustion synthesis and mechanical milling[J].Journal of Alloys and Compounds,2012,539:215-220.
[16] Wei L J,Gu H,Zhu Y F,et al.Superior hydrogen storage properties of Mg95Ni5+10 wt% nanosized Zr0.7Ti0.3Mn2+3 wt% MWCNT prepared by hydriding combustion synthesis followed by mechanical milling(HCS + MM)[J].International Journal of Hydrogen Energy,2012,37(22):17146-17152.
[17] Gu H,Zhu Y F,Li L Q.Structures and hydrogen storage properties of Mg95Ni5 composite prepared by hydriding combustion synthesis and mechanical milling[J].Materials Chemistry and Physics,2008,112(1):218-222.
[18] Jain A,Agarwal S,Jain P,et al.Hydriding behavior of Mg-50 wt% ZrCrFe composite prepared by prepared by high energy ball milling[J].International Journal of Hydrogen Energy,2012,37(4):3665-3670.
[19] Mahmoudi N,Kaflou A,Simchi A.Hydrogen desorption properties of MgH2-TiCr1.2Fe0.6 nanocomposite prepared by high-energy mechanical alloying[J].Journal of Power Sources,2011,196(10):4604-4608.
[20] Akiba E,Iba H.Hydrogen absorption by Laves phase related BCC solid solution[J].Intermetallics,1998,6(6):461-470.
[21] Liu X F,Zhu Y F,Li L Q.Hydrogen storage properties of Mg100-xNix(x=5,11.3,20,25)composites prepared by hydriding combustion synthesis followed by mechanical milling(HCS+MM)[J].Intermetallics,2007,15(12):1582-1588.
[22] 林根文,周国治,李谦,等.常压下催化合成氢化镁放氢动力学研究[J].稀有金属材料与工程,2006,35(5):802-805.
[23] Kalisvaart W P,Kubis A,Danaie M,et al.Microstructural evolution during hydrogen sorption cycling of Mg-FeTi nanolayered composites[J].Acta Materialia,2011,59(5):2083-2095.
[24] Choi Y J,Lu J,Sohn H Y,et al.Hydrogen storage properties of the Mg-Ti-H system prepared by high-energy-high-pressure reactive milling[J].Journal of Power Sources,2008,180(1):491-497.
[25] Ranjbar A,Ismail M,Guo Z P,et al.Effects of CNTs on the hydrogen storage properties of MgH2 and MgH2-BCC composite[J].International Journal of Hydrogen Energy,2010,35(15):7821-7826.

相似文献/References:

[1]原建光,李莹,谈亚军,等.碳载钯的添加对镁基储氢合金吸放氢性能的影响[J].南京工业大学学报(自然科学版),2015,37(03):0.
 YUAN Jianguang,LI Ying,TAN Yajun,et al.Effects of multi-wall carbon nanotubes supported palladium addition on hydrogen storage properties of magnesium hydride[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2015,37(01):0.

备注/Memo

备注/Memo:
收稿日期:2013-03-22
基金项目:国家自然科学基金(51071085,51171079); 江苏省青蓝工程; 江苏高校优势学科建设工程项目
作者简介:卫灵君(1985—),女,江苏南通人,博士生,主要研究方向为新型能源材料; 李李泉(联系人),教授,E-mail:lilq@njut.edu.cn..
更新日期/Last Update: 2014-01-20