|本期目录/Table of Contents|

[1]蒋皎梅,赵建平,戴树和,等.循环冷却水中ATMP与方解石表面相互作用的机制[J].南京工业大学学报(自然科学版),2014,36(01):102-106.[doi:10.3969/j.issn.1671-7627.2014.01.019]
 JIANG Jiaomei,ZHAO Jianping,DAI Shuho,et al.Interaction between ATMP and calcite crystal surface in cooling water systems[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2014,36(01):102-106.[doi:10.3969/j.issn.1671-7627.2014.01.019]
点击复制

循环冷却水中ATMP与方解石表面相互作用的机制()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
36
期数:
2014年01期
页码:
102-106
栏目:
出版日期:
2014-01-20

文章信息/Info

Title:
Interaction between ATMP and calcite crystal surface in cooling water systems
文章编号:
1671-7627(2014)01-0102-05
作者:
蒋皎梅1赵建平2戴树和2徐炎华1
1.南京工业大学 环境学院 江苏省工业节水减排重点实验室,江苏 南京 210009; 2.南京工业大学 机械与动力工程学院,江苏 南京 211800
Author(s):
JIANG Jiaomei1ZHAO Jianping2DAI Shuho2XU Yanhua1
1.Jiangsu Key Laboratory of Industrial Water-Conservation & Emission Reduction, College of Environment,Nanjing University of Technology,Nanjing 210009,China; 2.College of Mechanical and Power Engineering,Nanjing University of Technology,Nanjin 211800,
关键词:
阻垢剂 方解石 分子模拟
Keywords:
scale inhibitor calcite molecular simulation
分类号:
TQ085+.4
DOI:
10.3969/j.issn.1671-7627.2014.01.019
文献标志码:
A
摘要:
利用临界pH法,研究循环冷却水中氨基三亚甲基膦酸(ATMP)对CaCO3结晶介稳区增加宽度的影响; 用分子模拟研究ATMP在方解石晶面5个生长面(110)、(104)、(102)、(113)和(202)上的优先吸附位点,利用蒙特卡罗方法计算ATMP与方解石不同晶面相互作用的结合能。结果表明:ATMP与方解石晶面上的结合能由大到小顺序为Eb(110)>Eb(113)>Eb(102)>Eb(104)>Eb(202); ATMP低浓度时,各晶面的吸附阻垢作用基本相当,ATMP高浓度时,(102)、(202)晶面对吸附阻垢效果的贡献较大; 结合能与在相应晶面上作用后ATMP构型量化参数(能隙ΔE、偶极矩μ和范德华表面体积VVDW)的关系为Eb=1.207-0.226ΔE-0.638μ-0.574VVDW(R2=0.995)。
Abstract:
The increase of calcium carbonate crystallization metastable zone was investigated by determining the critical pH value of simulation circulating cooling water with amino trimethylene phosphonic acid(ATMP).The interaction energy of ATMP with calcite surface(110),(104),(102),(113),(202)was calculated by a Monte Carlo method.Results indicated that the binding energy had the sequence of Eb(110)>Eb(113)>Eb(102)>Eb(104)>Eb(202).ATMP adsorption chance on each calcite surface was similar on low concentration while the adsorption chance on calcite surface(102)and(202)was more on higher concentrations; the relationship of binding energy and the configuration parameters(energy gap(ΔE),dipole monent(μ)and Van der Waals volume(VVDW))of the adsorbed ATMP was Eb= 1.207-0.226ΔE-0.638μ-0.574 VVDW(R2=0.995).

参考文献/References:

[1] 周本省.工业水处理技术[M].北京:化学工业出版社,2007.
[2] 李本高.现代工业水处理技术与应用[M].北京:中国石化出版社,2004.
[3] Kile D E,Eberl D D,Hoch A R.An assessment of calcite crystal growth mechanisms based on crystal size distributions [J].Geochim Cosmochim Acta,2000,64(17):2937-2950.
[4] Mann S,Archilbald D D,Didymus J M.Crystallization at inorganic-organic interfaces:biominerals and biomimetic synthesis[J].Science,1993,261:1286.
[5] Demadis K D,Katarachia S D.Metal-phosphonate chemistry:synthesis,crystal structure of calcium-aminotris-(methylene phosphonate)and inhibition of CaCO3 crystal growth [J].Phosphorus Sulfur and Silicon,2004,179:627-648.
[6] Fink J K.Petroleum engineer’s guide to oil field chemicals and fluids[M].Oxford:Elsevier,2012:253-274.
[7] Nishida I,Okaue Y,Yokoyama T.The inhibition abilities of multifunctional polyelectrolytes for silica scale formation in cooling water systems:role of the nonionic functional group[J].Journal of Colloid and Interface Science,2011,360:110-116.
[8] Kim W T,Cho Y I.A study of scale formation around air bubble attached on a heat-transfer surface[J].International Communications in Heat and Mass Transfer,2002,29(1):1-14.
[9] 蒋皎梅,陈国松,张红漫.循环冷却水阻垢剂用量的实验研究[J].工业水处理,2007,27(1):42-44.
[10] Jiang J M,Xu Y H.New estimation of the dosage of scale inhibitor in the cooling water system[J].E-Journal of Chemistry,2011,8(4):1881.
[11] Pina C M,Putnis C V,Becker U,et al.An atomic force microscopy and molecular simulations study of the inhibition of barite growth by phosphonates[J].Surface Science,2004,553:61-74.
[12] Snurr R Q,Bell A T,Theodorou D N.Prediction of adsorption of aromatic hydrocarbons in silicalite from grand canonical Monte Carlo simulations with biased insertions [J].Journal of Physical Chemistry,1993,97:13742-13752.
[13] Sun H.COMPASS:an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds[J].The Journal of Physical Chemistry B,1998,102(38):7338-7364.
[14] Nowack B,Stone A T.Adsorption of phosphonates onto the goethite-water interface[J].Journal of Colloid and Interface Science,1999,214:20-30.
[15] Reddy M M,Hoch A R.Calcite crystal growth rate inhibition by polycarboxylicacid[J].Journal of Colloid and Interface Science,2001,236:365-370.
[16] Manoli F,Kanakis J,Malkaj P.The effect of aminoacids on the crystal growth of calcium carbonate[J].Journal of Crystal Growth,2002,236:363-370.
[17] 夏明珠,雷武,戴林宏,等.膦系阻垢剂对CaCO3阻垢机制的研究[J].化学学报,2010,68(2):143-148.
[18] 褚玉婷,石文艳,吕志敏,等.ATMP及其取代物缓蚀阻垢机制的分子动力学研究[J].计算机与应用化学,2011,28(10):1270-1274.
[19] He F,Sirkar K K,Gilron J.Effects of antiscalants to mitigate membrane scaling by direct contact membrane distillation [J].Journal of Membrane Science,2009,345:53-58.
[20] Severtson S J,Guo J.Influence ofozonized kraft lignin on the crystallization of CaCO3 [J].Journal of Colloid and Interface Science,2002:249:423-431.
[21] 徐敬.用分子模拟方法研究羟基乙叉二膦酸(HEDP)在方解石表面的吸附行为[J].物理学报,2006,55(3):1107-1112.
[22] 姜兆华,孙德智,邵光杰.应用表面化学与技术[M].哈尔滨:哈尔滨工业大学出版社,2000:55.

相似文献/References:

[1]钟白茜,程麟,郭斌.用IR方法研究硅酸钙水化产物的碳化[J].南京工业大学学报(自然科学版),1982,4(02):39.
[2]周本省,陈建华,陆建英.多元醇磷酸酯和有机膦酸盐抑制碳酸钙析出性能的对比研究[J].南京工业大学学报(自然科学版),1985,7(01):67.
[3]陈娜,杨刚.阻垢剂在反渗透处理造纸废水中的应用[J].南京工业大学学报(自然科学版),2015,37(04):124.[doi:10.3969/j.issn.1671-7627.2015.04.022]
 CHEN Na,YANG Gang.Application of scale inhibitor in paper-making wastewater treatment with reverse osmosis[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2015,37(01):124.[doi:10.3969/j.issn.1671-7627.2015.04.022]

备注/Memo

备注/Memo:
收稿日期:2013-04-24
基金项目:江苏省高校自然科学研究重大项目(11KJA610001)
作者简介:蒋皎梅(1972—),女,江苏沭阳人,博士生,主要研究方向为水处理; 赵建平(联系人),教授,E-mail:jpzhao71@163.com..
更新日期/Last Update: 2014-01-20