|本期目录/Table of Contents|

[1]钮满志,陈捷,封杨,等.基于支持向量机的风电偏航回转支承故障诊断[J].南京工业大学学报(自然科学版),2014,36(01):117-122.[doi:10.3969/j.issn.1671-7627.2014.01.022]
 NIU Manzhi,CHEN Jie,FENG Yang,et al.Fault diagnosis of wind power yawing slewing bearing based on support vector machine[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2014,36(01):117-122.[doi:10.3969/j.issn.1671-7627.2014.01.022]
点击复制

基于支持向量机的风电偏航回转支承故障诊断()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
36
期数:
2014年01期
页码:
117-122
栏目:
出版日期:
2014-01-20

文章信息/Info

Title:
Fault diagnosis of wind power yawing slewing bearing based on support vector machine
文章编号:
1671-7627(2014)01-0117-06
作者:
钮满志陈捷封杨王华
南京工业大学 机械与动力工程学院,江苏 南京 210009
Author(s):
NIU ManzhiCHEN JieFENG YangWANG Hua
College of Mechanical and Power Engineering,Nanjing University of Technology,Nanjing 210009,China
关键词:
支持向量机 回转支承 故障诊断
Keywords:
support vector machine(SVM) slewing bearing fault diagnosis
分类号:
TP206.3
DOI:
10.3969/j.issn.1671-7627.2014.01.022
文献标志码:
A
摘要:
针对风电回转支承故障样本少、信号微弱且不易提取的特点,提出一种基于小波能谱和支持向量机相结合的故障诊断方法。采用加速度信号的小波能谱与温度、扭矩信号组合构成特征向量,用支持向量机对正常、单个螺栓断裂、多个螺栓断裂3种状态进行分类识别,结果分类准确率都达到100%。样本不变,采用BP神经网络方法分类的准确率分别为84%、92%和80%。结果表明,支持向量机方法比BP神经网络更适用于风电回转支承的故障诊断。
Abstract:
A fault diagnosis method based on wavelet energy spectrum and support vector machine(SVM)was proposed in terms of less fault samples,weakness of signals and difficulty to be extracted of wind power slewing bearing.Feature vectors were constructed by combining wavelet energy spectrum of acceleration signal with temperature and torque signal.And three normal states: single bolt fracture and multiple bolt fracture were classified by using SVM with classification accuracy of 100%,while the classification accuracies for the same samples reached only 84%,92%,and 80%, respectively by the BP neural network method.Results show that SVM method is more suitable than BP neural network method for wind power slewing bearing fault diagnosis.

参考文献/References:

[1] 龚群协,刘稚钧,李华彪.大型回转支承振动诊断技术应用研究[J].噪声与振动控制,2003(4):39-42.
[2] 张惠芳,陈捷.大型回转支承故障信号处理方法综述[J].机械设计与制造,2012(3):216-218.
[3] Worden K,Lane A J.Damage identification using support vector machines[J].Smart Material & Structure,2001(3):540-547.
[4] Jack L B,Nandi A K.Support vector machines for detection and characterization of rolling element bearing faults[J].Journal of Mechanical Engineering Science,2001,215(9):1065-1074.
[5] Vapnik V.Statistical learning theory[M].New York:John Wiley&Sons,1998.
[6] Cortes C,Vapnik V.Support-vector network[J].Machine Learning,1995(20):273-297.
[7] 邓乃扬,田英杰.数据挖掘中的新方法:支持向量机[M].北京:科学出版社,2004.
[8] 张慧芳.3兆瓦风电偏航回转支承故障信号处理的方法研究[D].南京:南京工业大学,2012.
[9] 张景川,曾周末,赖平,等.基于小波能谱和小波信息熵的管道异常振动事件识别方法[J].振动与冲击,2010,29(5):1-4.
[10] 史峰,王小川,郁磊,等.Matlab神经网络30个案例分析[M].北京:北京航空航天大学出版社,2010.

相似文献/References:

[1]沈瑞华,潘勇,倪磊.三元可燃性液体水溶液闪点的理论预测[J].南京工业大学学报(自然科学版),2011,33(06):62.
 SHEN Ruihua,PAN Yong,NI Lei.Prediction of flash points for ternary organic-water solution mixtures by support vector machine[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2011,33(01):62.
[2]汤明敏,王华,黄筱调.基于多特征参量的回转支承智能健康状态评估[J].南京工业大学学报(自然科学版),2014,36(02):101.[doi:10.3969/j.issn.1671-7627.2014.02.017]
 TANG Mingmin,WANG Hua,HUANG Xiaodiao.Intelligent health condition assessment on slewing bearing based on multiple characteristic parameters[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2014,36(01):101.[doi:10.3969/j.issn.1671-7627.2014.02.017]
[3]薄翠梅,张湜,李俊.工业共沸精馏塔软测量建模方法的研究与应用[J].南京工业大学学报(自然科学版),2006,28(03):44.[doi:10.3969/j.issn.1671-7627.2006.03.010]
 BO Cui-mei,ZHANG Shi,LI Jun.Study and application of soft sensor modeling methods aiming at an industrial azeotropic distillation[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2006,28(01):44.[doi:10.3969/j.issn.1671-7627.2006.03.010]
[4]崔永超,张湜,王永华.基于支持向量机的软测量建模方法的应用[J].南京工业大学学报(自然科学版),2007,29(03):99.[doi:10.3969/j.issn.1671-7627.2007.03.022]
 CUI Yong-chao,ZHANG Shi,WANG Yong-hua.Modeling method based on support vector machine and its application[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2007,29(01):99.[doi:10.3969/j.issn.1671-7627.2007.03.022]
[5]徐洪钟,杨磊.基于最小二乘支持向量机回归的基坑变形预测[J].南京工业大学学报(自然科学版),2008,30(02):51.[doi:10.3969/j.issn.1671-7627.2008.02.012]
 XU Hong-zhong,YANG Lei.Prediction foundation pit deformation based on least squar support vector machine regression[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2008,30(01):51.[doi:10.3969/j.issn.1671-7627.2008.02.012]

备注/Memo

备注/Memo:
收稿日期:2013-04-11
基金项目:国家十二五科技支撑计划(2011BAF09B02); 国家自然科学基金(51105191)
作者简介:钮满志(1989—),男,江苏兴化人,硕士,主要研究方向为回转支承故障诊断; 陈捷(联系人),教授,E-mail:820967156@qq.com..
更新日期/Last Update: 2014-01-20