|本期目录/Table of Contents|

[1]郑娇玲,邵高峰,沈晓冬.水性聚合物和化学外加剂协同作用对水泥砂浆强度的影响[J].南京工业大学学报(自然科学版),2014,36(02):14-20.[doi:10.3969/j.issn.1671-7627.2014.02.003]
 ZHENG Jiaoling,SHAO Gaofeng,SHEN Xiaodong.Synergistic interactions between water-soluble polymers and chemical additives on strength development of silicate cement[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2014,36(02):14-20.[doi:10.3969/j.issn.1671-7627.2014.02.003]
点击复制

水性聚合物和化学外加剂协同作用对水泥砂浆强度的影响()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
36
期数:
2014年02期
页码:
14-20
栏目:
出版日期:
2014-03-30

文章信息/Info

Title:
Synergistic interactions between water-soluble polymers and chemical additives on strength development of silicate cement
文章编号:
1671-7627(2014)02-0014-07
作者:
郑娇玲邵高峰沈晓冬
南京工业大学 材料科学与工程学院 材料化学工程国家重点实验室,江苏 南京 210009
Author(s):
ZHENG JiaolingSHAO GaofengSHEN Xiaodong
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
关键词:
Box-Behnken 实验设计 水性聚合物 化学外加剂 砂浆强度
Keywords:
Box-Behnken design water-soluble polymer chemical additive strength of mortar
分类号:
TU528.04
DOI:
10.3969/j.issn.1671-7627.2014.02.003
文献标志码:
A
摘要:
利用 Box-Behnken 实验设计(BBD)方法研究水溶性聚合物(聚乙烯醇(PVA)、聚丙烯酰胺(PAM))和化学添加剂(有机硅消泡剂(SD)、聚羧酸减水剂(PC))复配对水泥砂浆抗压强度的影响,得出能反映化学组分掺量与水泥砂浆强度关系的二次方程、化学组分与水泥砂浆强度的帕累托图(Parrot)。结果表明:聚乙烯醇对水泥1 d砂浆强度的贡献最大,随着龄期的增长,作用逐渐减小。聚丙烯酰胺对强度的影响主要体现在28 d,聚羧酸减水剂的作用主要体现在3 d。此外,有机硅消泡剂和聚丙烯酰胺的交互作用存在于整个水化过程中,而有机硅消泡剂和聚羧酸减水剂的交互作用主要体现在3 d前。
Abstract:
Influences of water-soluble polymers of polyvinyl alcohol(PVA)and polyacrylamide(PAM), and chemical additive of silicone defoamer(SD)and polycarboxylate superplasticizer(PC)on the strength development of mortar were investigated by Box-Behnken design(BBD).The quadratic equations for the correlation between dosages of chemicals and the strength of mortar were obtained, and the orders of effectiveness of chemicals were validated in Pareto charts with contour plots to illustrate chemicals and their interactions for the strength enhancement of mortar. Results showed that PVA made the most contributions to 1 d strength, and the longer the curing time, the weaker the effect. The effects of PAM only appeared in 28 d, and superplasticizer dominated the strength enhancement of mortar in 3 d. Additionally, the interaction effects of SD and PAM enhanced the strength of cement mortar during all the curing time, but the interaction effects of SD and superplasticizer just appeared in the first 3 d.

参考文献/References:

[1] 胡曙光.先进水泥基复合材料[M].北京:科学出版社,2009.
[2] Rai U S,Singh R K.Effect of polyacrylamide on the different properties of cement and mortar[J].Materials Science and Engineering:A,2005,392:42-50.
[3] Sun Z Z,Xu Q W.Micromechanical analysis of polyacrylamide-modified concrete for improving strengths[J].Materials Science and Engineering:A,2008,490:181-192.
[4] Carlos N,Luis M S,Elena F.Polyacrylamide induced flocculation of a cement suspension[J].Chemical Engineering Science,2006,61:2522-2532.
[5] 严亮,于翔.水溶性聚合物对水泥浆体性能的影响[J].混凝土,2012,3:113-116.
[6] 张长清,曹志宇.聚丙烯酰胺对水泥性质影响的试验研究[J].重庆交通大学学报:自然科学版,2011,30(6):1339-1343.
[7] Mansur A A P,Santos D B,Mansur H S A.Microstructural approach to adherence mechanism of poly(vinyl alcohol)modified cement systems to ceramic tiles[J].Cement and Concrete Research,2007,37:270-282.
[8] Kim J H,Richard E R.Structure and properties of poly(vinyl alcohol)-modified mortar and concrete[J].Cement and Concrete Research,1999,29:407-415.
[9] Singh N B,Rai S.Effect of polyvinyl alcohol on the hydration of cement with rice husk ash[J].Cement and Concrete Research,2001,31:239-243.
[10] Kim J,Robertson R E.Effects of polyvinyl alcohol on aggregate-paste bond strength and the interfacial transition zone[J].Advanced Cement Based Materials,1998,8(2):66-76.
[11] Wang Z Y,Li J,Robert J L.Response surface optimization of the heaprosan N-deacetylation in producing bioengineered heparin[J].Journal of Biotechnology,2011,156:188-196.
[12] Deniz B,Sevil V,Sibel Z.Analysis of adsorption of reactive azo dye onto CuCl2 doped polyaniline using Box-Behnken design approach[J].Synthetic Metals,2012,162:1566-1571.
[13] 黄弘,沈晓冬.利用 Box-Behnken实验设计研究化学外加剂组分对水泥砂浆强度的影响[J].南京工业大学学报:自然科学版,2011,33(2):6-11.
[14] Vanderghem C,Brostaux Y,Jacquet N.Optimization of formic/acetic acid delignification of miscanthus×giganteus for enzymatic hydrolysis using response surface methodology [J].Industrial Crops and Products,2012,35:280-286.
[15] Muthukumar M,Mohan D,Rajendran M.Optimization of mix proportions of mineral aggregates using Box-Behnken design of experiments[J].Cement & Concrete Composites,2003,25:751-758.
[16] Deepak D D,Vilas G G,Shekhar K.Modeling and optimizing of steam pyrolysis of dimethyl formamide by using response surface methodology coupled with Box-Behnken design[J].Journal of Analytical and Applied Pyrolysis,2012,96:6-15.

备注/Memo

备注/Memo:
收稿日期:2013-05-10
基金项目:国家重点基础研究发展计划(973计划)(2009CB623100); 江苏高校优势学科建设工程; 长江学者和创新团队发展计划(IRT1146); 江苏省普通高校研究生科研创新计划(CXZZ11_0326)
作者简介:郑娇玲(1977—),女,吉林白城人,博士生,主要研究方向为新型化学建材; 沈晓冬(联系人),教授,E-mail:xdshen@njtech.edu.cn..
更新日期/Last Update: 2014-03-20