|本期目录/Table of Contents|

[1]杨新俊,凌祥,周建新.超声冲击改善S30403不锈钢表面状态的数值模拟[J].南京工业大学学报(自然科学版),2014,36(02):28-34.[doi:10.3969/j.issn.1671-7627.2014.02.005]
 YANG Xinjun,LING Xiang,ZHOU Jianxin.Simulation of surface modification of S30403 stainless steel treated by ultrasonic impact treatment[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2014,36(02):28-34.[doi:10.3969/j.issn.1671-7627.2014.02.005]
点击复制

超声冲击改善S30403不锈钢表面状态的数值模拟()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
36
期数:
2014年02期
页码:
28-34
栏目:
出版日期:
2014-03-30

文章信息/Info

Title:
Simulation of surface modification of S30403 stainless steel treated by ultrasonic impact treatment
文章编号:
1671-7627(2014)02-0028-07
作者:
杨新俊凌祥周建新
南京工业大学 机械与动力工程学院,江苏 南京 210009
Author(s):
YANG XinjunLING XiangZHOU Jianxin
College of Mechanical and Power Engineering,Nanjing Tech University,Nanjing 210009,China
关键词:
超声冲击处理 覆盖率 残余压应力 有限元方法
Keywords:
ultrasonic impact treatment coverage compressive residual stress finite element method
分类号:
TG176
DOI:
10.3969/j.issn.1671-7627.2014.02.005
文献标志码:
A
摘要:
基于Johnson-Cook方程建立超声冲击处理的三维有限元模型,研究超声冲击处理奥氏体不锈钢S30403的动力学过程,分析冲击速度、覆盖率对残余应力分布和表面应力集中因子Zi的影响。结果表明:冲击处理后的表面在冲击凹坑边缘存在4个月牙状高拉应力区。随着冲击速度的增加,月牙状区域的形状与面积基本不变,但是随着覆盖率的增加,月牙状区域逐渐融合。冲击速度对表面残余压应力值、最大残余应力深度和残余应力厚度的影响较大,但对最大压残余应力值的影响较小。冲击处理后的应力集中系数Zi随着冲击速度的增加开始增幅较大,后逐渐趋于平缓。覆盖率低于100%时,覆盖率对残余应力层的厚度以及最大残余应力的深度影响很小,但是表面残余压应力值则随着覆盖率的增加明显变大; 当覆盖率达到200%,残余应力的深度显著增加,显著提高了残余压应力区域的应力水平。
Abstract:
A 3D finite element model of ultrasonic impact treatment based on Johnson-Cook equation was established to research the dynamics process of impacting S30403 austenitic stainless steel. The influence of velocity and coverage on residual stress distribution and stress concentration factor Zi on the surface was analyzed. Results showed that four crescent zones with high tensile residual stress existed on the edge of the indent. The shape and the area of the zones kept same when the velocity changes, but the zones tended to merge together with the increase of the coverage. It was also found that the impact velocity had great influence on surface residual stress, maximum residual stress location and the depth of the residual stress, but less on maximum compressive residual stress. The stress concentration factor Zi rapidly increased with the increase of the velocity, then slowed down. When the coverage was less than 100%, residual stress depth and the location of the maximum residual stress changed little, while the surface residual stress significantly increased with its growth. When the coverage reached 200%, the depth of residual stress obviously was increased and the stress in the compressive stress area was evidently raised.

参考文献/References:

[1] Wagner L.Mechanical surface treatments on titanium,aluminum and magnesium alloys [J].Materials Science and Engineering:A,1999,263(2):210-216.
[2] 马刚.超声冲击强化焊接接头抗应力腐蚀性能研究 [D].南京:南京工业大学,2010.
[3] Miao H,Zuo D W,Wang M,et al.Numerical calculation and experimental research on residual stress in precipitation-hardening layer of NAK80 steel for shot peening[J].Chinese Journal of Mechanical Engineering,2011,24(3):439-445.
  
[4] Janosch J,Koneczny H,Debiez S,et al.Improvement of fatigue strength in welded joints(in HSS and in aluminium alloys)by ultrasonic hammer peening[J].Welding in the World,1996,37(10):72-82.
[5] Mordyuk B N,Prokopenko G I,Iefiraov M O,et al.Effect of structure evolution induced by ultrasonic peening on the corrosion behavior of AISI-321 stainless steel [J].Materials Science and Engineering:A,2007,458(1/2):253-261.
[6] Mordyuk B N,Prokopenko G I.Fatigue life improvement of titanium by novel ultrasonically assisted technique [J].Materials Science and Engineering:A,2006,437(2):396-405.
[7] Mordyuk B N,Prokopenko G I.Ultrasonic impact peening for the surface properties’ management [J].Journal of Sound and Vibration,2007,308(3/4/5):855-866.
[8] Roy S,Fisher J W.Enhancing fatigue strength by ultrasonic impact treatment [J].Steel Structures,2005,5:241-252.
[9] Vilhauer B,Bennett C R,Matamoros A B,et al.Fatigue behavior of welded coverplates treated with ultrasonic impact treatment and bolting [J].Engineering Structures,2012,34:163-172.
[10] Roy S,Fisher J,Yen B.Fatigue resistance of welded details enhanced by ultrasonic impact treatment(UIT)[J].International Journal of Fatigue,2003,25(9/10/11):1239-1247.
[11] Lee S,Barthelat F,Hutchinson J W,et al.Dynamic failure of metallic pyramidal truss core materials-experiments and modeling [J].International Journal of Plasticity,2006,22(11):2118-2145.
[12] 凌祥,彭薇薇,倪红芳.喷丸三维残余应力场的有限元模拟[J].机械工程学报,2006,42(8):182-189.
[13] Vallellano C,Navarro A,Dominguez J.Fatigue crack growth threshold conditions at notches:I.theory [J].Fatigue and Fracture of Engineering Materials and Structures,2000,23(2):113-121.
[14] de los Rios E R,Trull M,Levers A.Modelling fatigue crack growth in shot-peened components of Al 2024-T351 [J].Fatigue and Fracture of Engineering Materials and Structures,2000,23(8):709-716.
[15] Hassani-Gangaraj S M,Guagliano M,Farrahi G H.Finite element simulation of shot peening coverage with the special attention on surface nanocrystallization [J].Engineering Procedia,2011,10:2464-2471.

备注/Memo

备注/Memo:
收稿日期:2013-05-23
基金项目:国家高技术研究发展计划(863计划)(2012AA040105); 江苏省普通高校研究生科研创新计划(CXLX11_0361)
作者简介:杨新俊(1985—),男,江苏如皋人,博士生,主要研究方向为过程设备先进制造技术; 凌祥(联系人),教授,E-mail:xling@njtech.edu.cn..
更新日期/Last Update: 2014-03-20