|本期目录/Table of Contents|

[1]张舒,周剑秋,王璐,等.拉伸轴与孪晶界角度对纳米孪晶材料变形行为的影响[J].南京工业大学学报(自然科学版),2014,36(03):26-31.[doi:10.3969/j.issn.1671-7627.2014.03.006]
 ZHANG Shu,ZHOU Jianqiu,WANG Lu,et al.Effects of the angle between loading axis and twin boundary on the deformation behavior of nanotwinned materials[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2014,36(03):26-31.[doi:10.3969/j.issn.1671-7627.2014.03.006]
点击复制

拉伸轴与孪晶界角度对纳米孪晶材料变形行为的影响()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
36
期数:
2014年03期
页码:
26-31
栏目:
出版日期:
2014-05-20

文章信息/Info

Title:
Effects of the angle between loading axis and twin boundary on the deformation behavior of nanotwinned materials
文章编号:
1671-7627(2014)03-0026-06
作者:
张舒周剑秋王璐王英
南京工业大学 机械与动力工程学院,江苏 南京 211800
Author(s):
ZHANG ShuZHOU JianqiuWANG LuWANG Ying
College of Mechanical and Power Engineering,Nanjing Tech University,Nanjing 211800,China
关键词:
纳米孪晶材料 本构模型 应变梯度 位错
Keywords:
nanotwinned material constitutive model strain gradient dislocation
分类号:
TB381
DOI:
10.3969/j.issn.1671-7627.2014.03.006
文献标志码:
A
摘要:
基于纳米孪晶材料独特的微结构及其内部变形机制,建立了相交于孪晶界剪切变形和平行于孪晶界剪切变形的几何模型,采用有限元模拟的方法分析拉伸轴与孪晶界角度对纳米孪晶材料变形行为的影响。等效塑性应变演化过程表明:即使是相邻的晶粒,它们的应变分布也有很大不同,这都是因为拉伸轴与孪晶界角度的影响。通过合理调整角度,可以有效地延迟剪切带的出现。但是随着孪晶片层厚度的减小,角度的影响越来越薄弱。
Abstract:
Based on the unique nanostructure and deformation mechanism of nanotwinned materials,a geometric model considering the shear deformation across the twin boundaries(TBs)and the shear deformation parallel to the TBs was developed.The effects of the angle between the loading axis and the twin boundary were analyzed by a finite element method.The evolution of equivalent plastic strain showed that,even in the neighboring grains,there was great different strain distribution between the loading axis and the twin boundary.By making a proper arrangement of the angle,the onset of shear band could be effectively delayed.However,the effects of the angle on the stress-strain relations became weaker with the twin density lamellae thickness decreased.

参考文献/References:

[1] Weertman J R,Farkas D,Kung H,et al.Structure and mechanical behavior of bulk nanocrystalline material [J].Materials Research Society Bulletin,1999,24(2):24-44.
[2] Dalla Torre F,van Swygenhoven H,Victoria M.Nanocrystalline electrodeposited Ni:microstructure and tensile properties[J].Acta Materialia,2002,50(7):3957-3970.
[3] Schwaiger R,Moser B,Dao M,et al.Nanostructured or amorphous materials[J].Acta Materialia,2003,51(17):5159-5172.
[4] Wei Q,Jia D,Ramesh K T,et al.Evolution and microstructure of shear bands in nanostructured Fe[J].Applied Physics Letters,2002,81(7):1240-1242.
[5] Lu L,Shen Y F,Chen X H,et al.Ultrahigh strength and high electrical conductivity in copper[J].Science,2004,304:422-426.
[6] Capolungo L,Jochum C,Cherkaoui M,et al.Homogenization method for strength and inelastic behavior of nanocrystalline materials[J].International Journal of Plasticity,2005,21(1):67-82.
[7] Kocks U F,Mecking H.Physics and phenomenology of strain hardening:the FCC case[J].Progress in Materials Science,2003,48(3):171-273.
[8] Nix W D,Gao H J.Indentation size effects in crystalline materials:a law for strain gradient plasticity[J].Journal of the Mechanics and Physics of Solids,1998,46(3):411-425.

备注/Memo

备注/Memo:
收稿日期:2013-05-23
基金项目:国家自然科学基金(11272143,10872087,10502025); 教育部科学技术研究重点项目(211061); 江苏省普通高校研究生科研创新计划(CXZZ11_0342)
作者简介:张舒(1986—),女,江苏连云港人,博士生,主要研究方向为纳米材料的力学行为; 周剑秋(联系人),教授,E-mail:zhouj@njtech.edu.cn..
更新日期/Last Update: 2014-05-20