|本期目录/Table of Contents|

[1]王英,周剑秋,张舒.纳米晶体材料不同晶粒尺寸与取向分布下力学性能的有限元分析[J].南京工业大学学报(自然科学版),2014,36(05):70-75.[doi:10.3969/j.issn.1671-7627.2014.05.013]
 WANG Ying,ZHOU Jianqiu,ZHANG Shu.Finite element simulation analysis on effects of grain size and grain orientation on mechanical behavior of nanocrystalline materials[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2014,36(05):70-75.[doi:10.3969/j.issn.1671-7627.2014.05.013]
点击复制

纳米晶体材料不同晶粒尺寸与取向分布下力学性能的有限元分析()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
36
期数:
2014年05期
页码:
70-75
栏目:
出版日期:
2014-09-30

文章信息/Info

Title:
Finite element simulation analysis on effects of grain size and grain orientation on mechanical behavior of nanocrystalline materials
文章编号:
1671-7627(2014)05-0070-06
作者:
王英周剑秋张舒
南京工业大学 机械与动力工程学院,江苏 南京 211800
Author(s):
WANG YingZHOU JianqiuZHANG Shu
College of Mechanical and Power Engineering,Nanjing Tech University,Nanjing 211800,China
关键词:
纳米晶体材料 晶粒尺寸分布 晶粒取向分布 有限元分析
Keywords:
nanocrystalline materials grain size distribution grain orientation distribution finite element simulation
分类号:
TB31
DOI:
10.3969/j.issn.1671-7627.2014.05.013
文献标志码:
A
摘要:
基于考虑晶粒尺寸和取向的弹性黏塑性本构模型,针对3组不同尺寸和取向分布的数字化微观结构模型,采用有限元模拟的方法分析晶粒尺寸和取向分布对纳米晶体材料拉伸力学性能的影响。结果表明:晶粒的尺寸和取向对纳米晶体材料的力学性能有着很明显的影响,且晶粒尺寸分布对力学性能的影响比取向分布的影响要显著。同时,尺寸均匀分布的晶粒中产生的剪切带相对于非均匀分布的晶粒中产生的要均匀,可以减小材料软化的局部性,较好地提高了材料的拉伸强度和韧性。
Abstract:
An elastic-viscoplastic constitutive model for nancrystalline materials with respect to grain size and orientation was proposed.From the numerical simulation of three cases with different grain size and orientation distributions, the grain size and orientation effects were quantitatively analyzed.The grain size and orientation had obvious effects on the overall mechanical behavior of nanocrystalline materials,especially the grain size distribution.The shear bands in uniform grain size distribution were more uniform than that in nonuniform grain size distribution.That could effectively reduce the material softening locality and improve the tensile strength and ductility of nanocrystalline materials.

参考文献/References:

[1] Kadkhodapour J,Ziaei-Rad S,Karimzadeh F.Finite-element modeling of rate dependent mechanical properties in nanocrystalline materials [J].Computational Materials Science,2009,45(4):1113-1124.
[2] Dao M,Lu L,Asaro R J,et al.Toward a quantitative understanding of mechanical behavior of nanocrystalline metals [J].Acta Materialia,2007,55:4041-4065.
[3] Dalla Torre F,Spatig P,Schaeublin R,et al.Deformation behaviour and microstructure of nanocrystalline electrodeposited and high pressure torsioned nickel [J].Acta Materialia,2005,53:2337-2349.
[4] Zhao S J,Albe K,Hahn H.Grain size dependence of the bulk modulus of nanocrystalline nickel [J].Scripta Materialia,2006,55(5):473-476.
[5] Zhu B,Asaro R J,Krysl P,et al.Effects of grain size distribution on the mechanical response of nanocrystalline metals:part Ⅱ[J].Acta Materialia,2006,54(12):3307-3320.
[6] Zhu B,Asaro R J,Krysl P,et al.Transition of deformation mechanisms and its connection to grain size distribution in nanocrystalline metal [J].Acta Materialia,2005,53:4825-4838.
[7] Oja M,Ravichandran K S,Tryon R G.Orientation Imaging Microscopy of fatigue crack formation in Waspaloy:crystallographic conditions for crack nucleation [J].International Journal of Fatigue,2010,32:551-556.
[8] Jeng Y R,Tsai P C,Chiang S H.Effects of grain size and orientation on mechanical and tribological characterizations of nanocrystalline nickel films [J].Wear,2013,303(1/2):262-268.
[9] Asaro R J,Needleman A.Texture development and strain hardening in rate dependent polycrystals [J].Acta Metallurgica,1985,33:923-953.
[10] Fromm B S,Adams B L,Ahmadi S,et al.Grain size and orientation distributions:application to yielding of α-titanium [J].Acta Materialia,2009,57:2339-2348.
[11] Grössinger R,Badurek G,Fidler J,et al.Structural methods for studying nanocrystalline materials [J].Journal of Magnetism and Magnetic Materials,2005,294:152-158.
[12] Aurenhammer F.Voronoi fiagrams:a survey of a fundamental geometric data structure [J].ACM Computing Surveys,1991,23(3):345-405.
[13] Gross D,Li M.Constructing microstructures of poly-and nanocrystalline materials for numerical modeling and simulation [J].Applied Physics Letters,2002,80:746-748.
[14] Bunge H.Texture analysis in material science[M].London:Butterworths,1982:4-8.
[15] Zhu R T,Zhou J Q,Jiang H,et al.Multi-scale modeling of shear banding in fully dense nanocrystalline Ni sheet [J].Materials Science and Engineering A,2010,527:1751-1760.

相似文献/References:

[1]周剑秋,张振忠,尹侠,等.纳米晶体材料的本构模型研究进展[J].南京工业大学学报(自然科学版),2006,28(05):105.[doi:10.3969/j.issn.1671-7627.2006.05.023]
 ZHOU Jian-qiu,ZHANG Zheng-zhong,YIN Xia,et al.Review on the constitutive modeling study of nanocrystalline materials[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2006,28(05):105.[doi:10.3969/j.issn.1671-7627.2006.05.023]

备注/Memo

备注/Memo:
收稿日期:2013-10-31
基金项目:国家自然科学基金(11272143,10872087,10502025); 教育部科学技术研究重点项目(211061); 江苏省普通高校研究生科研创新计划(CXZZ11_0343)
作者简介:王英(1985—),女,湖北襄阳人,博士生,主要研究方向为先进材料的力学行为; 周剑秋(联系人),教授,E-mail:zhouj@njtech.edu.cn..
更新日期/Last Update: 2014-09-20