|本期目录/Table of Contents|

[1]尤飞,胡世强,魏秋萍,等.软质聚氨酯泡沫阴燃前热解特性及动力学分析[J].南京工业大学学报(自然科学版),2014,36(05):112-117.[doi:10.3969/j.issn.1671-7627.2014.05.020]
 YOU Fei,HU Shiqiang,WEI Qiuping,et al.Pyrolysis characteristics and kinetics of flexible polyurethane foam before smoldering[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2014,36(05):112-117.[doi:10.3969/j.issn.1671-7627.2014.05.020]
点击复制

软质聚氨酯泡沫阴燃前热解特性及动力学分析()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
36
期数:
2014年05期
页码:
112-117
栏目:
出版日期:
2014-09-30

文章信息/Info

Title:
Pyrolysis characteristics and kinetics of flexible polyurethane foam before smoldering
文章编号:
1671-7627(2014)05-0112-06
作者:
尤飞胡世强魏秋萍王新
南京工业大学 城市建设与安全工程学院 江苏省城市与工业安全重点实验室,江苏 南京 210009
Author(s):
YOU FeiHU ShiqiangWEI QiupingWANG Xin
Jiangsu Key Laboratory of Urban and Industrial Safety,College of Urban Construction and Safety Engineering, Nanjing Tech University,Nanjing 210009,China
关键词:
软质聚氨酯泡沫 阴燃 O2浓度 热解动力学 活化能
Keywords:
flexible polyurethane foam smoldering oxygen content pyrolysis kinetics activation energy
分类号:
TK6
DOI:
10.3969/j.issn.1671-7627.2014.05.020
文献标志码:
A
摘要:
采用差示扫描量热-热重分析(DSC-TGA)同步热分析仪和中温差热分析仪(DTA)对软质聚氨酯泡沫(FPUF)在不同O2浓度下的热解特性、热解动力学及其对阴燃的影响进行研究。结果表明:聚氨酯泡沫热解主要分为2个阶段。第一阶段主要是FPUF分解产生异氰酸酯和多元醇,第二阶段主要为多元醇的分解。当O2体积分数从0增加到50%时,第一阶段热解起始温度和活化能变化很小,第二阶段最大质量分数损失速率对应温度从385 ℃降低到300 ℃,活化能从170 kJ/mo1降低到80 kJ/mo1。聚氨酯热解过程中不同类型反应的活化能大小顺序为:多元醇热解活化能>聚氨酯热解活化能>多元醇氧化活化能。多元醇氧化反应产生的热量是聚氨酯泡沫阴燃时的主要热量来源。因此,O2浓度增加通过加快热解速率、降低反应所需温度和增加放热量来促进阴燃的建立和传播。
Abstract:
The simultaneous differential scanning calorimeter-thermogravimetric analyzer(DSC-TGA)and differential thermal analyzer(DTA)were used to investigate the pyrolysis characteristics and kinetics of flexible polyurethane foam(FPUF)under conditions of different oxygen contents,and their influences on smoldering were considered.Results showed that the thermal degradation of FPUF consisted of two stages.The first stage could be considered as the decomposition of FPUF, which produced isocyanate and polyol,and the second stage was associated with the decomposition of polyol.When oxygen content ranged from 0 to 50%,both the initial temperature and the activation energy of the first pyrolysis stage were little changed,whereas in the second stage the temperature at maximum weight loss rate reduced from 385 ℃ to 300 ℃,and the activation energy reduced from 170 kJ/mo1 to 80 kJ/mo1.The activation energies of different reactions were rated as:polyol thermolysis> FPUF thermolysis> polyol oxidation.The heat generated by the reaction of polyol oxidation was the main energy source to maintain the smoldering propagation of FPUF.With the increase of oxygen content the pyrolysis rates and the heat release were enhanced,the reaction temperature was reduced,and the establishment and the propagation of smoldering were thus promoted.

参考文献/References:

[1] Wong C R.Contribution of upholstered furniture to residential fire fatalities in New Zealand[R].Wellington:University of Canterbury,2001.
[2] Valencia L B,Rogaume T,Guillaume E.Analysis of principal gas products during combustion of polyether polyurethane foam at different irradiance levels[J].Fire Safety Journal,2009,44(7):933-940.
[3] Krämer R H,Zammarano M,Linteris G T.Heat release and structural collapse of flexible polyurethane foam[J].Polymer Degradation and Stability,2010,95(6):1115-1122.
[4] Zhang Yanhong,Xia Zhengbin,Huang Hong,et al.Thermal degradation of polyurethane based on IPDI[J].Journal of Analytical and Applied Pyrolysis,2009,84(1):89-94.
[5] Wodarczak D.Studies of temperature and atmosphere composition iduence on thermal degradation products of polyurethane foam[J].Journal of Applied Polymer Science,1988,36(2):377-386.
[6] Xue Lin,Yang Yun,Xie Qiyuan.Experimental study on degradation properties of typical polyurethane foam under different gas atmospheres and different heating rates[J].Journal of Applied Fire Science,2007,17(2):167-175.
[7] 雷毅,梁栋,莫善军.聚氨酯软泡热解动力学与阴燃点燃特性研究[J].消防科学与技术,2011,30(10):881-885.
[8] 李响.废塑料硬软聚氨酯热解特性的比较研究[D].哈尔滨:哈尔滨工业大学,2006.
[9] Xiao Binli,Hong Bincao,Zhang Yi.Thermal degradation kinetics of rigid polyurethane foams blown with water[J].Journal of Applied Polymer Science,2006,102(5):4149-4156.
[10] Day M,Cooney J D,Wiles D M.The thermal stability of poly(aryl-ether-ether-ketone)as assessed by thermogravimetry[J].Journal of Applied Polymer Science,1989,38(2),323-337.
[11] Ohlemiller T J,Bellan J,Rogers F.A model of smoldering combustion applied to flexible polyurethane foams[J].Combustion and Flame,1979,36(2):197-215.
[12] Marquisa D M,Guillaume E,Camillo A,et al.Existence and uniqueness of solutions of a differential equation system modeling the thermal decomposition of polymer materials[J].Combustion and Flame,2013,160(4):818-829.
[13] Dodda A B,Lautenberger C,Pello C F.Computational modeling of smolder combustion and spontaneous transition to flaming[J].Combustion and Flame,2012,159(1):448-461.
[14] Wolska A,Gozdzikiewicz M,Ryszkowska J.Thermal and mechanical behaviour of flexible polyurethane foams modified with graphite and phosphorous fillers[J].Journal of Materials Science,2012,47(15):5627-5634.
[15] Tse S.An experimental investigation of two-dimensional smoldering and the transition to flaming in flexible polyurethane foam[D].San Francisco:University of California,1996.
[16] Chao C Y H,Wang J H.Transition from smoldering to flaming combustion of horizontally oriented flexible polyurethane foam with natural convection[J].Combustion and Flame,2001,127(4):2252-2264.
[17] Hu Shiqiang,You Fei.The effects of oxygen contents and heating rates on characteristics of pyrolysis prior to smoldering of flexible polyurethane foam[J].Procedia Engineering,2013,52:145-151.

备注/Memo

备注/Memo:
收稿日期:2013-09-07
基金项目:国家自然科学基金(50906039)
作者简介:尤飞(1976—),男,安徽宿州人,副教授,主要研究方向为特殊火灾演变机制及其关键防治技术、纳米安全性评估,E-mail:yfei@njtech.edu.cn..
更新日期/Last Update: 2014-09-20