|本期目录/Table of Contents|

[1]宇晓明,顾伯勤,张斌,等.短纤维端部形状对其增强复合材料应力分布的影响[J].南京工业大学学报(自然科学版),2015,37(02):75-79.[doi:10.3969/j.issn.1671-7627.2015.02.015]
 YU Xiaoming,GU Boqin,ZHANG Bin,et al.Effects of fiber tip geometry on stress distribution of short fiber reinforced composites[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2015,37(02):75-79.[doi:10.3969/j.issn.1671-7627.2015.02.015]
点击复制

短纤维端部形状对其增强复合材料应力分布的影响()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
37
期数:
2015年02期
页码:
75-79
栏目:
出版日期:
2015-03-20

文章信息/Info

Title:
Effects of fiber tip geometry on stress distribution of short fiber reinforced composites
文章编号:
1671-7627(2015)02-0075-05
作者:
宇晓明顾伯勤张斌陈立立姜剑
南京工业大学 机械与动力工程学院,江苏 南京 211800
Author(s):
YU XiaomingGU BoqinZHANG BinCHEN LiliJIANG Jian
College of Mechanical and Power Engineering,Nanjing Tech University,Nanjing,211800,China
关键词:
短纤维 复合材料 纤维端部形状 应力分布
Keywords:
short fiber composite material fiber tip geometry stress distribution
分类号:
TB332
DOI:
10.3969/j.issn.1671-7627.2015.02.015
文献标志码:
A
摘要:
采用ABAQUS软件分析了不同纤维端部形状下碳纤维增强树脂基复合材料的纤维端部应力分布。考虑的纤维端部形状包括平面、半椭球面、楔形面。结果表明:当长径比≥0.75时,半椭球面纤维端部复合材料力学性能优于平面和楔形纤维端部复合材料。进一步研究了界面相厚度、界面相弹性模量对纤维端部轴向应力和剪应力的影响。结果表明:轴向应力σB随界面相弹性模量的增加逐渐减小,界面相弹性模量较小时(E≤4 GPa左右),剪应力τD随着界面相弹性模量的增加而迅速增加,此后τD基本保持不变; 当E≥3 GPa左右时,轴向应力σB随界面相厚度的增加逐渐减小。在所研究的界面相厚度(0.1、0.2、0.3 μm)范围内,τD基本不随界面相厚度的变化而改变。所以界面相弹性模量应尽可能小于并接近于树脂基体的弹性模量(4 GPa),并适当增加界面相厚度有利于抑制界面脱粘破坏。
Abstract:
The stress distribution in the fiber tip region of the carbon fiber reinforced resin matrix composites was analyzed by using ABAQUS software in different fiber tip shapes.The fiber tip shapes including flat,semi-elliptical and wedge were considered.Results showed that mechanical performance of semi-elliptical fiber tip was better than that of flat and wedge fiber tips of composite materials when the ratio of length to diameter of the fiber was larger than or equal to 0.75.The influence of the interface thickness and modulus on the axial and shear stresses of the fiber tip was also studied.Results indicated that the axial stress σB decreased gradually with the increase of the interface elastic modulus.The shear stress τD increased with the increase of the interface elastic modulus rapidly when the interface elastic modulus was less than 4 GPa,and it remained nearly constant when the interface elastic modulus was greater than 4 GPa.The axial stress σB decreased gradually with the increase of the interface thickness when the interface elastic modulus was larger than or equal to 3 GPa.The interface thicknesses of 0.1, 0.2 and 0.3 μm were employed,which had a little influence on the shear stress τD. As a result,the interface elastic modulus should be less than or close to the resin matrix elastic modulus(4 GPa)as far as possible.It was helpful to controlling the interface debonding failure by increasing the thickness of interface.

参考文献/References:

[1] Gu B Q,Chen Y.Development of a new kind of sealing composite material reinforced with aramid and pre-oxidized fibers[J].Key Engineering Materials,2007,353:1243-1246.
[2] Shen H,Nutt S,Hull D.Direct observation and measurement of fiber architecture in short fiber-polymer composite foam through micro-CT imaging[J].Composites Science and Technology,2004,64(13):2113-2120.
[3] Peled A,Mobasher B,Cohen Z.Mechanical properties of hybrid fabrics in pultruded cement composites[J].Cement and Concrete Composites,2009,31(9):647-657.
[4] Bernasconi A,Cosmi F,Dreossi D.Local anisotropy analysis of injection moulded fibre reinforced polymer composites[J].Composites Science and Technology,2008,68(12):2574-2581.
[5] 康国政,高庆.纤维长径比对单向短纤维复合材料力学行为的影响[J].西南交通大学学报:自然科学版,2000,35(2):188-191.
[6] Lee D J,Oh H,Song Y S,et al.Analysis of effective elastic modulus
   for multiphased hybrid composites[J].Composites Science and Technology,2012,72(2):278-283.
[7] Pih H,Bi Q,Chen Y Y,et al.Dynamic stress-concentration effects on stress waves in composite models with different fiber-end geometries[J].Experimental mechanics,1985,25(3):214-225.
[8] Huang Y,Bu Y,Zhou L,et al.Fatigue crack growth and propagation along the adhesive interface between fiber-reinforced composites[J].Engineering Fracture Mechanics,2013,110:290-299.
[9] Wang X,Zhang J,Wang Z,et al.Finite element simulation of the failure process of single fiber composites considering interface properties[J].Composites Part B:Engineering,2013,45(1):575-580.
[10] 唐绍锋,梁军,杜善义.含界面相的单向纤维增强复合材料三维应力场的二重双尺度方法[J].复合材料学报,2010,27(1):167-172.
[11] Zhang B,Gu B Q.The Effect of Interphase Modulus and Thickness on Stress Transfer of Short-Fiber-Reinforced Composites[J].Applied Mechanics and Materials,2011,55:303-307.
[12] Meini Y,Yanqing Y,Bin H,et al.Effect of interface reaction on interface shear strength of SiC fiber reinforced titanium matrix composites[J].Rare Metal Materials and Engineering,2009,38(8):1321-1324.
[13] 杨庆生.复合材料细观结构力学与设计[M].北京:中国铁道出版社,2000.
[14] Gao S L,Mäder E.Characterisation of interphase nanoscale property variations in glass fibre reinforced polypropylene and epoxy resin composites[J].Composites Part A:Applied Science and Manufacturing,2002,33(4):559-576.

相似文献/References:

[1]李传江,顾伯勤,黄星路.横向压缩载荷下短纤维复合材料细观力学分析[J].南京工业大学学报(自然科学版),2012,34(02):120.[doi:doi:10.3969/j.issn.1671-7627.2012.02.025]
 LI Chuanjiang,GU Boqin,HUANG Xinglu.Micromechanics analysis of short fiber-reinforced composites under transverse compressive loads[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2012,34(02):120.[doi:doi:10.3969/j.issn.1671-7627.2012.02.025]
[2]吴战武,刘渝,沈晓冬,等.MTES疏水改性SiO2气凝胶修饰活性炭复合材料的制备及结构表征[J].南京工业大学学报(自然科学版),2012,34(03):103.[doi:10.3969/j.issn.1671-7627.2012.03.021]
 WU Zhanwu,LIU Yu,SHEN Xiaodong,et al.Preparation and characterization of activated carbon composite materials modified by MTES hydrophobic silica aerogel[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2012,34(02):103.[doi:10.3969/j.issn.1671-7627.2012.03.021]
[3]段许佳,卢圣国,罗芳,等.琼脂糖-玻璃珠亲和色谱填料合成及分离应用[J].南京工业大学学报(自然科学版),2014,36(03):82.[doi:10.3969/j.issn.1671-7627.2014.03.016]
 DUAN Xujia,LU Shengguo,LUO Fang,et al.Preparation of agarose-glass composite particles for affinity purification of glycoproteins[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2014,36(02):82.[doi:10.3969/j.issn.1671-7627.2014.03.016]
[4]李乔钧,陆雪非,尤加健,等.MPPO/talc复合材料制备及其性能研究[J].南京工业大学学报(自然科学版),1996,18(01):40.
 Li Qiaojun,Lu Xuefei,You Jiajian,et al.STUDY ON PREPARATION OF MPPO/TALC COMPOSITE AND ITS PROPERTIES[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),1996,18(02):40.
[5]马功勋.各向异性板弯曲的数值解[J].南京工业大学学报(自然科学版),1996,18(01):58.
 Ma Gongxun (Department of Mechanical Engineering,Nanjing University of Chemical Technology,Nanjing,et al.NUMERICAL SOLUTION FOR BENDING OF ANISOTROPY PLATES[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),1996,18(02):58.
[6]王志远,沈旭,俞娟,等.纳米炭黑/聚酰亚胺复合材料的摩擦磨损性能[J].南京工业大学学报(自然科学版),2015,37(02):28.[doi:10.3969/j.issn.1671-7627.2015.02.006]
 WANG Zhiyuan,SHEN Xu,YU Juan,et al.Friction and wear performance of nanometer carbon black/polyimide composite material[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2015,37(02):28.[doi:10.3969/j.issn.1671-7627.2015.02.006]
[7]曾少华,申明霞,李佳骐,等.MWCNT对玻纤复合材料界面黏合性及其影响机制[J].南京工业大学学报(自然科学版),2017,39(05):27.[doi:10.3969/j.issn.1671-7627.2017.05.005]
 ZENG Shaohua,SHEN Mingxia,LI Jiaqi,et al.Effects of MWCNT on interfacial adhesion of glass fiber composites and its reinforcing mechanisms[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2017,39(02):27.[doi:10.3969/j.issn.1671-7627.2017.05.005]
[8]邓国良,邓建新,黄家成,等.南昌大桥桥墩抗浮运管段撞击能力评估及复合材料防撞设计[J].南京工业大学学报(自然科学版),2017,39(05):115.[doi:10.3969/j.issn.1671-7627.2017.05.018]
 DENG Guoliang,DENG Jianxin,HUANG Jiacheng,et al.Assessment of resistance to floating pipe impact capability and protection method of Nanchang Bridge piers[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2017,39(02):115.[doi:10.3969/j.issn.1671-7627.2017.05.018]
[9]张斌,顾伯勤,宇晓明.大模量比短纤维增强复合材料应力分布预测[J].南京工业大学学报(自然科学版),2015,37(02):65.[doi:10.3969/j.issn.1671-7627.2015.02.013]
 ZHANG Bin,GU Boqin,YU Xiaoming.Prediction of stress distribution in short-fiber-reinforced composites of large modulus ratio[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2015,37(02):65.[doi:10.3969/j.issn.1671-7627.2015.02.013]

备注/Memo

备注/Memo:
收稿日期:2014-01-17
基金项目:国家自然科学基金(51375223); 江苏省普通高校研究生科研创新计划(CXZZ11_0337)
作者简介:宇晓明(1986—),女,吉林吉林人,博士生,主要研究方向为流体密封与测控技术; 顾伯勤(联系人),教授,E-mail:bqgu@njtech.edu.cn.
引用本文:宇晓明,顾伯勤,张斌,等.短纤维端部形状对其增强复合材料应力分布的影响[J].南京工业大学学报:自然科学版,2015,37(2):75-79.
.
更新日期/Last Update: 2015-02-20