|本期目录/Table of Contents|

[1]王彦彬,张大长,李步辉.考虑失效区域的悬臂锥形钢管抗弯承载力计算[J].南京工业大学学报(自然科学版),2015,37(02):108-114.[doi:10.3969/j.issn.1671-7627.2015.02.021]
 WANG Yanbin,ZHANG Dachang,LI Buhui.Calculation method for flexural capacity of cantilever tapered steel pipe considering failure zone[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2015,37(02):108-114.[doi:10.3969/j.issn.1671-7627.2015.02.021]
点击复制

考虑失效区域的悬臂锥形钢管抗弯承载力计算()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
37
期数:
2015年02期
页码:
108-114
栏目:
出版日期:
2015-03-20

文章信息/Info

Title:
Calculation method for flexural capacity of cantilever tapered steel pipe considering failure zone
文章编号:
1671-7627(2015)02-0108-07
作者:
王彦彬1张大长1李步辉2
1.南京工业大学 土木工程学院,江苏 南京 211800; 2.河海大学 土木交通工程学院,江苏 南京 210012
Author(s):
WANG Yanbin1ZHANG Dachang1LI Buhui2
1.College of Civil Engineering,Nanjing Tech University,Nanjing 211800,China; 2.College of Civil and Transportation Engineering,Hohai University,Nanjing 210012,China
关键词:
锥形钢管 悬臂构件 抗弯承载力 失效长度 锥度
Keywords:
tapered steel pipe cantilever member flexural capacity failure length tapered degree
分类号:
TU392
DOI:
10.3969/j.issn.1671-7627.2015.02.021
文献标志码:
A
摘要:
以解决目前悬臂锥形钢管抗弯承载力计算为目的,考虑径厚比、失效长度、锥度等因素,推导管径较大端的径厚比在10~60情况下截面失效界限位置与不同锥度的对应关系,提出考虑失效区域的承载力计算设计理论; 分析锥度0.1~1.0区间内钢管各截面的抗弯承载力并确定失效长度取值。在开展端部径厚比为30的情况下,锥度0.2、0.3、0.4、0.5悬臂钢管抗弯极限承载力和锥度0.4、0.5钢管失效长度的有限元验算工作,不论承载力和失效长度都与理论推导吻合较好,说明该理论达到了控制失效区域,避免塔体整体失效的设计目的。另编制锥度和失效长度的关系表供设计计算查询。
Abstract:
In order to solve the calculation problems of the flexural capacity of cantilever tapered steel pipe,theoretical research considering failure zone was comducted.The relationship between tapered degree and failure position was firstly derived under the condition that the width-thickness ratio of the bigger side ranges from 10 to 60.To determine the failure length,the flexural capacity of every section was calculated with the tapered degree ranges from 0.1 to 1.0,and a table with the relationship between the tapered degree and the failure length was made to facilitate further design.Then,a calculation by finite element method was made with radius-thickness ratio of 30,at larger end and the tapered degrees 0.2,0.3,0.4 and 0.5,to prove the accuracy of design theory.As the result indicts,the flexural capacity and the failure length fit the theory well,and the research reaches the initiate goal to control the failure zone and prevent global failure.

参考文献/References:

[1] 林世袍.钢管杆横担结构设计[J].水利电力机械,2007,29(11):34-37.
[2] 徐永禧.特高压输电研究的过去及今后工程的预测[J].国际电力,2004,8(6):33-36.
[3] Prasad Rao N,Samuel Knight G M.Failure analysis of transmission line towers[J].Journal of Performance of Constructed Facilities,2010,25(3):231-240.
[4] 国家电力公司东北设计院.DL/T 5130—2001架空送电线路钢管杆设计技术规定[S].北京:中国电力出版社,2001.
[5] 日本铁塔协会.送电钢管塔制作基准[S].东京:[s.n],1991.
[6] Hong Li,Barry Anderson.Simulation of the cross arm failure due to unequal Ice loading of two 500 kV transmission towers through numerical modeling[J].Electrical Transmission Line and Substation Structures,2006,218(7):69-82.
[7] 陈绍蕃.钢结构设计原理[M].北京:科学出版社,2005.
[8] 夏永旭.工程结构数值分析方法[M].北京:人民交通出版社,2008.
[9] 王习术.材料力学行为试验与分析[M].北京:清华大学出版社,2010.
[10] 陈骥.钢结构稳定理论与设计[M].北京:科学出版社,2011.

备注/Memo

备注/Memo:
收稿日期:2014-04-08
基金项目:江苏省“六大人才高峰”计划
作者简介:王彦彬(1988—),男,江苏扬州人,硕士,主要研究方向为材料科学; 张大长(联系人),教授,E-mail: dczhangchina@163.com.
引用本文:王彦彬,张大长,李步辉.考虑失效区域的悬臂锥形钢管抗弯承载力计算[J].南京工业大学学报:自然科学版,2015,37(2):108-114..
更新日期/Last Update: 2015-02-20