|本期目录/Table of Contents|

[1]封杨,黄筱调,陈捷,等.大型回转支承非平稳振动信号的EEMD-PCA降噪方法[J].南京工业大学学报(自然科学版),2015,37(03):61-66.[doi:10.3969/j.issn.1671-7627.2015.03.012]
 FENG Yang,HUANG Xiaodiao,CHEN Jie,et al.EEMD-PCA based denosing method for non-stationary vibration signals of large-size slewing bearings[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2015,37(03):61-66.[doi:10.3969/j.issn.1671-7627.2015.03.012]
点击复制

大型回转支承非平稳振动信号的EEMD-PCA降噪方法()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
37
期数:
2015年03期
页码:
61-66
栏目:
出版日期:
2015-05-30

文章信息/Info

Title:
EEMD-PCA based denosing method for non-stationary vibration signals of large-size slewing bearings
文章编号:
1671-7627(2015)03-0061-06
作者:
封杨黄筱调陈捷王华洪荣晶
南京工业大学 机械与动力工程学院,江苏 南京 210009
Author(s):
FENG YangHUANG XiaodiaoCHEN JieWANG HuaHONG Rongjing
College of Mechanical and Power Engineering,Nanjing Tech University,Nanjing 210009,China
关键词:
大型回转支承 EEMD-PCA 非平稳信号降噪 性能衰退模型
Keywords:
slewing bearing EEMD-PCA non-stationary signal performance degradation model
分类号:
TP206.3
DOI:
10.3969/j.issn.1671-7627.2015.03.012
文献标志码:
A
摘要:
针对大型回转支承工况恶劣、背景噪声高,且振动信号非平稳的特点,提出了一种基于聚类经验模态分解-主成分分析(EEMD-PCA)的降噪方法。通过EEMD和PCA将回转支承整个寿命周期的振动信号与回转支承使用初期的振动信号进行对比,确定多个回转支承振动信号中影响较大的经验模态函数(IMF),最后进行信号重构,完成降噪过程。为验证降噪效果,利用PCA对降噪信号建立了回转支承性能衰退指标。结果表明,提出的方法比现有方法得到的衰退趋势更接近回转支承实际的衰退过程,为后续寿命预测等研究提供了有效的信号处理方法。
Abstract:
An ensemble empirical mode decomposition-principle component analysis(EEMD-PCA)method was proposed to denoise non-stationary vibration signals with strong white noise generated by large-size slewing bearings.Vibration signals of the whole service life were compared with that of incipient periods using EEMD-PCA,and several significant intrinsic mode functions(IMFs)were selected to reconstruct signals for finishing the denoising process.To verify the proposed method,experiments were conducted and the life cycle vibration signals were denoised.The performance degradation model was established by PCA to explain the denoising effect.Results showed that the proposed method acquired a better denoising effect and provides a potential signal processing method for further research.

参考文献/References:

[1] 曹冲锋,杨世锡,杨将新.大型旋转机械非平稳振动信号的EEMD
  降噪方法[J].振动与冲击,2009,28(9):33-38.
[2] 钮满志,陈捷,封杨,等.基于支持向量机的风电偏航回转支承故障诊断[J].南京工业大学学报:自然科学版,2014,36(1):117-122.
[3] Matej Z,Samo Z,Ivan P.Multivariate and multiscale monitoring of large-size low-speed bearings using ensemble empirical mode decomposition method combined with principal component analysis[J].Mechanical Systems and Signal Processing,2010(24):1049-1067.
[4] Matej Z,Samo Z,Ivan P.Non-linear multivariate and multiscale monitoring and signal denoising strategy using Kernel Principal Component Analysis combined with Ensemble Empirical Mode Decomposition method[J].Mechanical Systems and Signal Processing,2011(25):2631-2653.
[5] Wahyu C,Prabuono B K,Anh K T,et al.Condition monitoring of naturally damaged slow speed slewing bearing based on ensemble empirical mode decomposition[J].Journal of Mechanical Science and Technology,2013,27(8):2253-2262.
[6] 张慧芳,陈捷.大型回转支承故障信号处理方法综述[J].机械设计与制造,2012(3):216-218.
[7] 刘志军,陈捷.回转支承的故障监测诊断技术研究[J].现代制造工程,2011(11):127-131.
[8] Wu Z,Huang N E.Ensemble empirical mode decomposition:a noise-assisted data analysis method[J].Advances in Adaptive Data Analysis,2009,1(1):1-41.
[9] 陈忠,符和超.基于EEMD方法的永磁同步电机电磁噪声诊断[J].振动与冲击,2013,32(20):124-128.
[10] 许丽,张进明,张广明,等.基于PCA的滚动轴承故障检测方法[J].计算机仿真,2010,27(6):325-329.
[11] 郭金玉,曾静.基于多尺度主元分析方法的统计过程监视[J].沈阳化工学院学报:自然科学版,2006(1):48-51.
[12] 万书亭,吕路勇,何玉灵.基于提升模式非抽样小波变换的滚动轴承故障诊断方法研究[J].振动与冲击,2009,28(1):170-173.

备注/Memo

备注/Memo:
收稿日期:2014-05-04
基金项目:国家自然科学基金(51375222,51105191)
作者简介:封杨(1988—),男,江苏泰兴人,博士生,主要研究方向为大型回转支承寿命预测理论及其维护; 黄筱调(联系人),教授,E-mail:njgdhxd@yeah.net.
引用本文:封杨,黄筱调,陈捷,等.大型回转支承非平稳振动信号的EEMD-PCA降噪方法[J].南京工业大学学报:自然科学版,2015,37(3):61-66..
更新日期/Last Update: 2015-05-20