|本期目录/Table of Contents|

[1]冒一锋,刘伟庆,周叮,等.船桥碰撞时船艏的刚度简化模型[J].南京工业大学学报(自然科学版),2015,37(05):67-72.[doi:10.3969/j.issn.1671-7627.2015.05.011]
 MAO Yifeng,LIU Weiqing,ZHOU Ding,et al.Stiffness simplified model of bow in ship bridge collision[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2015,37(05):67-72.[doi:10.3969/j.issn.1671-7627.2015.05.011]
点击复制

船桥碰撞时船艏的刚度简化模型()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
37
期数:
2015年05期
页码:
67-72
栏目:
出版日期:
2015-09-10

文章信息/Info

Title:
Stiffness simplified model of bow in ship bridge collision
文章编号:
1671-7627(2015)05-0067-06
作者:
冒一锋12刘伟庆1周叮1方海1庄勇2
1.南京工业大学 土木工程学院,江苏 南京 210009; 2.中铁大桥勘测设计院集团有限公司,湖北 武汉 430050
Author(s):
MAO Yifeng12LIU Weiqing1ZHOU Ding1FANG Hai1ZHUANG Yong2
1.College of Civil Engineering,Nanjing Tech University,Nanjing 210009,China; 2.China Railway Major Bridge Reconnaissance & Design Institute Co.Ltd.,Wuhan 430050,China
关键词:
船桥碰撞 船艏刚度 动力学分析 拟静力分析 曲线拟合
Keywords:
ship bridge collision bow stiffness dynamics analysis quasi-static analysis curve fitting
分类号:
U663
DOI:
10.3969/j.issn.1671-7627.2015.05.011
文献标志码:
A
摘要:
研究撞击力和船艏的撞深关系,取船体惯性力为船撞的等效静力荷载,对船撞刚性墙进行拟静力分析。以5 000DWT船舶作为研究对象,通过ANSYS有限元分析,得到船舶在1.0~6.0 m/s初速度范围内,与刚性墙正向撞击的撞击力-撞深曲线。根据对曲线的数据拟合,建立了船艏的分段刚度模型,并给出了船撞静刚度与动刚度之间的比例关系,为后续船桥碰撞的撞击力研究提供基础。分析结果表明,提出的船艏刚度简化模型可用于适合工程上应用的船桥碰撞质量-弹簧体系的动力分析。
Abstract:
The relationship between ship collision force and bow penetration was presented.Taking the inertia force as an equivalent static load,quasi-static analysis was carried out in the ship-rigid wall collision.Using the software ANSYS,the impact analysis of 5 000DWT ship and the initial velocity from 1.0 m/s to 6.0 m/s was carried out and the sample curves of impact force-bow indention relationship were obtained.Based on the curve fitting to the impact force-penetration curve,a piecewise stiffness model of ship bow was established.The proportional relationship between the static and dynamic stiffnesses was derived out,which formed the basis for the further research to the impact force.Numerical results showed that the present piecewise stiffness model could be used to obtain the mass-spring system in engineering application-oriented for the simplified dynamic analysis of ship-bridge collision.

参考文献/References:

[1] 江华涛,顾永宁.油轮艏部结构碰撞特性[J].上海交通大学学报,2003(7):985-989.
[2] Heins C P,Derucher K N.桥梁的防撞保护系统及其设计[M].杨渡军,译.北京:人民交通出版社,1990.
[3] American Association of State Highway and Transportation Officals(AASHTO).Guide specification and commentary for vessel collision design of highway bridge[S].Washington D C:AASHTO,2009.
[4] Pedersen P T,Valsgard S,Olsen D,et al.Ship impacts:bow collisions[J].International Journal of Impact Engineering,1993,13(2):163-187.
[5] Gluver H,Olsne D.Ship collision analysis[C]//The International Symposium on Advances in Ship Collision Analysis.Copenhagen:A Balkerna,1998:41-52.
[6] 铁道第三勘察设计院.TB 10002.1—2005 铁路桥涵设计基本规范[S].北京:中国铁道出版社,2005.
[7] 潘晋,张敏,许明财.桥梁防船撞钢套箱的碰撞力快速估算[J].振动与冲击:2014(8):66-71.
[8] 王君杰,卜令涛,孟德巍.船桥碰撞简化动力分析方法:简化动力模型[J].计算机辅助工程,2011(2):70-75.
[9] 江华涛,顾永宁.整船碰撞非线性有限元仿真[J].上海造船,2002(2):16-21.
[10] 刘建成,顾永宁.基于整船整桥模型的船桥碰撞数值仿真[J].工程力学,2003(9):155-162.
[11] 王自力,顾永宁.船舶碰撞动力学过程的数值仿真研究[J].爆炸与冲击,2001,21(1):29-34.
[12] 耿波,徐龙.粉房湾长江大桥船撞风险分析与设防标准研究[J].桥梁建设,2012,42(增刊1):7-12.
[13] 许波,刘征.Matlab工程数学应用[M].北京:清华大学出版社,2000.
[14] 孟德巍,王君杰.船艏正撞刚性墙力-撞深关系的简化公式研究[J].防灾减灾工程学报,2011,31(2):160-165.
[15] 陈诚.桥梁设计船撞力及损伤状态仿真研究[D].上海:同济大学,2006.
[16] 王君杰.基于碰撞数值模拟的桥梁等效静力船撞力-基本公式[J].公路交通技术,2009(2):66-70.

相似文献/References:

[1]韩娟,刘伟庆,王君杰,等.船桥碰撞系统的简化力学模型及动力分析[J].南京工业大学学报(自然科学版),2015,37(04):85.[doi:10.3969/j.issn.1671-7627.2015.04.015]
 HAN Juan,LIU Weiqing,WANG Junjie,et al.Simplified mechanical model and dynamic analysis of ship bridge collision system[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2015,37(05):85.[doi:10.3969/j.issn.1671-7627.2015.04.015]

备注/Memo

备注/Memo:
收稿日期:2014-11-07
基金项目:国家自然科学基金重点项目(51238003); 国家自然科学基金青年基金(51008157); 江苏省高校自然科学研究重大项目(12KJA580002)
作者简介:冒一锋(1984—),男,江苏如皋人,工程师,博士生,主要研究方向为新型复合材料与船桥碰撞; 刘伟庆(联系人),教授,E-mail:wqliu@njtech.edu.cn.
引用本文:冒一锋,刘伟庆,周叮,等.船桥碰撞时船艏的刚度简化模型[J].南京工业大学学报:自然科学版,2015,37(5):67-72..
更新日期/Last Update: 2015-09-20