|本期目录/Table of Contents|

[1]董淑宏,周剑秋.团聚碳纳米管增强金属基复合材料的力学行为[J].南京工业大学学报(自然科学版),2015,37(06):6-12.[doi:10.3969/j.issn.1671-7627.2015.06.002]
 DONG Shuhong,ZHOU Jianqiu.Role of carbon nanotube agglomeration in mechanical behavior of metal matrix composites[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2015,37(06):6-12.[doi:10.3969/j.issn.1671-7627.2015.06.002]
点击复制

团聚碳纳米管增强金属基复合材料的力学行为()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
37
期数:
2015年06期
页码:
6-12
栏目:
出版日期:
2015-11-20

文章信息/Info

Title:
Role of carbon nanotube agglomeration in mechanical behavior of metal matrix composites
文章编号:
1671-7627(2015)06-0006-07
作者:
董淑宏周剑秋
南京工业大学 机械与动力工程学院,江苏 南京 211800
Author(s):
DONG ShuhongZHOU Jianqiu
College of Mechanical and Power Engineering,Nanjing Tech University,Nanjing 211800,China
关键词:
碳纳米管 团聚 金属基复合材料
Keywords:
carbon nanotube agglomeration metal matrix composites
分类号:
TB331
DOI:
10.3969/j.issn.1671-7627.2015.06.002
文献标志码:
A
摘要:
采用传统制备技术制造的碳纳米管增强金属基复合材料中,团聚是一种常见的现象,团聚将减弱碳纳米管的强化效果。为了量化团聚对金属基复合材料整体力学行为的影响,构建了一种由纯基体区域和包含团聚碳纳米管区域组成的复合材料模型。采用分级方法结合晶体塑性理论分析了碳纳米管团聚对金属基复合材料弹性和塑性力学行为的影响。结果表明:团聚可以明显降低碳纳米管增强效果,且这种影响与增强相的尺寸相关。此外,计算结果与实验数据对比验证了分级方法的可行性。
Abstract:
The agglomeration of carbon nanotube(CNT)was a common phenomenon in CNT-reinforced metal matrix composites(MMCs)fabricated by the traditional techniques.The presence of agglomeration would weaken the strengthening effect of the reinforcement.To quantity the role of agglomeration on overall mechanical response of MMCs,a composite structure model consisting of pure metal matrix and the containing agglomerated CNT regions was established.A hierarchical approach combined with crystal plasticity analysis was developed to model the impact of agglomeration on the elastic and plastic responses of CNT/metal composites.Results showed that the agglomeration could obviously decrease the strengthening effect of the reinforcement,and the effect was related to the size(aspect ratio)of CNT.Compared with some available experimental results, the applicability of the proposed scheme was proved.

参考文献/References:

[1] Iijima S.Helical microtubules of graphitic carbon[J].Nature,1991,354:56-58.
[2] 张勇,张嘉庆,董清,等.曲率效应对扶手椅型碳纳米管电子性质的影响[J].南京工业大学学报:自然科学版,2009,31(2):73-76.
[3] 韩梅,张勇,黄礼胜.形变小直径扶手椅型碳纳米管的电子性质[J].南京工业大学学报:自然科学版,2008,30(1):19-22.
[4] Treacy M M J,Ebbesen T W,Gibson J M.Exceptionally high Young’s modulus observed for individual carbon nanotubes[J].Nature,1996,381:678-680.
[5] Shen L X,Li J.Transversely isotropic elastic properties of multiwalled carbon nanotubes[J].Physical Review B,2005,71(3):035412.
[6] 顾钧,沈晓冬,崔升.水热法制备碳纳米管/钡铁氧体复合材料[J].南京工业大学学报:自然科学版,2013,35(2):51-54.
[7] Kuzumaki T,Miyazawa K,Ichinose H,et al.Processing of carbon nanotube reinforced aluminum composite[J].Journal of Materials Research,1998,13:2445-2449.
[8] Esawi A,Morsi K,Sayed A,et al.Effect of carbon nanotube(CNT)content on the mechanical properties of CNT-reinforced aluminium composites[J].Composites Science and Technology,2010,70(16):2237-2241.
[9] Bakshi S R,Lahiri D,Agarwal A.Carbon nanotube reinforced metal matrix composites:a review[J].International Materials Reviews,2010,55(1):41-64.
[10] Jia Y,Peng K,Gong X L,et al.Creep and recovery of polypropylene/carbon nanotube composites[J].International Journal of Plasticity,2011,27(8):1239-1251.
[11] Xia Z,Riester L,Curtin W A,et al.Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites[J].Acta Materialia,2004,52(4):931-944.
[12] Esawi A,Morsi K.Dispersion of carbon nanotubes(CNTs)in aluminum powder[J].Composites Part A:Applied Science and Manufacturing,2007,38(2):646-650.
[13] Dong S H,Zhou J Q,Hui D,et al.Size dependent strengthening mechanisms in carbon nanotube reinforced metal matrix composites[J].Composites Part A:Applied Science and Manufacturing,2015,68:356-364.
[14] George R,Kashyap K T,Rahul R,et al.Strengthening in carbon nanotube/aluminium(CNT/Al)composites[J].Scripta Materialia,2005,53(10):1159-1163.
[15] Barai P,Weng G J.A theory of plasticity for carbon nanotube reinforced composites[J].International Journal of Plasticity,2011,27(4):539-559.
[16] Goh C S,Wei J,Lee L C,et al.Ductility improvement and fatigue studies in Mg-CNT nanocomposites[J].Composites Science and Technology,2008,68(6):1432-1439.
[17] Li Q Q,Viereckl A,Rottmair C A,et al.Improved processing of carbon nanotube/magnesium alloy composites[J].Composites Science and Technology,2009,69(7/8):1193-1199.
[18] Dunand D C,Mortensen A.Dislocation emission at fibers:II.experiments and microstructure of thermal punching[J].Acta Metallurgica et Materialia,1991,39(7):1417-1429.
[19] Han C S,Gao H,Huang Y,et al.Mechanism-based strain gradient crystal plasticity:I.theory[J].Journal of the Mechanics and Physics of Solids,2005,53(5):1188-1203.
[20] Mori T,Tanaka K.Average stress in matrix and average elastic energy of materials with misfitting inclusions[J].Acta Metallurgica,1973,21:571-574.
[21] Hill R.Theory of mechanical properties of fibre-strengthened materials:I.elastic behaviour[J].Journal of the Mechanics and
  Physics of Solids,1964,12:199-212.
[22] Khan A S,Huang S.Continuum Theory of Plasticity[M].New York:John Wiley&Sons,1995.
[23] 刘海军,方刚,曾攀.基于晶体塑性理论的大变形数值模拟技术[J].塑性工程学报,2006,13(2):1-8.
[24] Peirce D,Asaro R J,Needleman A.An analysis of nonuniform and localized deformation in ductile single-crystals[J].Acta Metallurgica,1982,30:1087-1119.
[25] Dai L H,Ling Z,Bai Y L.Size-dependent inelastic behavior of particle-reinforced metal-matrix composites[J].Composites Science and Technology,2001,61(8):1057-1063.
[26] Shao J C,Xiao B L,Wang Q Z,et al.An enhanced FEM model for particle size dependent flow strengthening and interface damage in particle reinforced metal matrix composites[J].Composites Science and Technology,2011,71(1):39-45.
[27] Weng G J.The overall elastoplastic stress-strain relations of dual-phase metals[J].Journal of the Mechanics and Physics of Solids,1990,38(3):419-441.
[28] Hu G.A method of plasticity for general aligned spheroidal void or fiber-reinforced composites[J].International Journal of Plasticity,1996,12(4):439-449.
[29] Yang S,Yu S,Ryu J,et al.Nonlinear multiscale modeling approach to characterize elastoplastic behavior of CNT/polymer nanocomposites considering the interphase and interfacial imperfection[J].International Journal of Plasticity,2013,41:124-146.
[30] Aghababaei R,Joshi S P.Micromechanics of crystallographic size-effects in metal matrix composites induced by thermo-mechanical loading[J].International Journal of Plasticity,2013,42:65-82.
[31] Kim K T,Cha S I,Hong S H,et al.Microstructures and tensile behavior of carbon nanotube reinforced Cu matrix nanocomposites[J].Materials Science and Engineering:A,2006,430(1/2):27-33.
[32] Li Y H,Housten W,Zhao Y,et al.Cu/single-walled carbon nanotube laminate composites fabricated by cold rolling and annealing[J].Nanotechnology,2007,18(20):205607.

相似文献/References:

[1]张弢,李含.化学修饰的水溶性碳纳米管[J].南京工业大学学报(自然科学版),2010,32(03):99.
 ZHANG Tao,LI Han.Water-soluble carbon nanotubes prepared by chemical modifications[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2010,32(06):99.
[2]崔升,沈晓冬,余姗姗.CNTs-ZAO复合粉体的制备及表征[J].南京工业大学学报(自然科学版),2013,35(01):1.[doi:10.3969/j.issn.1671-7627.2013.01.006]
 CUI Sheng,SHEN Xiaodong,YU Shanshan.Preparation and characterization of CNTs-ZAO compound powders[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2013,35(06):1.[doi:10.3969/j.issn.1671-7627.2013.01.006]
[3]安立宝,张玉婷.碳纳米管组装技术研究进展[J].南京工业大学学报(自然科学版),2017,39(03):132.[doi:10.3969/j.issn.1671-7627.2017.03.023]
 AN Libao,ZHANG Yuting.Research progress on assembly of carbon nanotubes[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2017,39(06):132.[doi:10.3969/j.issn.1671-7627.2017.03.023]

备注/Memo

备注/Memo:
收稿日期:2014-11-13
基金项目:国家自然科学基金(11272143); 教育部新世纪优秀人才(NCET-12-0712)
作者简介:董淑宏(1988—),男,江苏连云港人,博士生,主要研究方向为碳纳米管增强金属基复合材料的力学行为; 周剑秋(联系人),教授,E-mail:zhouj@njtech.edu.cn.
引用本文:董淑宏,周剑秋.团聚碳纳米管增强金属基复合材料的力学行为[J].南京工业大学学报:自然科学版,2015,37(6):6-12..
更新日期/Last Update: 2015-11-20