|本期目录/Table of Contents|

[1]邵世飞,周昌玉,常乐.压力管道应力强度非概率可靠性分析[J].南京工业大学学报(自然科学版),2016,38(03):44-49.[doi:10.3969/j.issn.1671-7627.2016.03.008]
 SHAO Shifei,ZHOU Changyu,CHANG Le.Non-probabilistic reliability analysis on stress strength of pressure pipe[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2016,38(03):44-49.[doi:10.3969/j.issn.1671-7627.2016.03.008]
点击复制

压力管道应力强度非概率可靠性分析()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
38
期数:
2016年03期
页码:
44-49
栏目:
出版日期:
2016-05-28

文章信息/Info

Title:
Non-probabilistic reliability analysis on stress strength of pressure pipe
文章编号:
1671-7627(2016)03-0044-06
作者:
邵世飞周昌玉常乐
南京工业大学 机械与动力工程学院,江苏 南京 211800
Author(s):
SHAO ShifeiZHOU ChangyuCHANG Le
College of Mechanical and Power Engineering,Nanjing Tech University,Nanjing 211800,China
关键词:
非概率可靠性 凸模可靠性 区间可靠性 压力管道 应力强度
Keywords:
non-probabilistic reliability convex model reliability interval reliability pressure pipe stress strength
分类号:
TE8
DOI:
10.3969/j.issn.1671-7627.2016.03.008
文献标志码:
A
摘要:
对压力管道进行应力强度分析时不确定参数的分布函数较难获取。为弥补数据的不确定信息,首先,运用非概率可靠性方法计算压力管道一次应力与二次应力的非概率可靠性,其次,通过调整功能函数与不确定参数的位置关系进一步研究区间可靠性与凸模可靠性的计算特点。压力管道应力强度计算结果表明:凸模可靠性较区间可靠性,在非概率可靠性计算区间扩张方面更有优势,而且可以根据工程实际问题作出灵活响应。区间可靠性较凸模可靠性更为保守,在数据不足的情况下,区间可靠性可保证安全。
Abstract:
Distributing functions of uncertain parameters are difficult to obtain for stress strength analysis of pressure pipe.To make up for uncertain information,non-probabilistic reliability approach was used to calculate non-probabilistic reliability of primary and secondary stress strength of pressure piping.In addition,features of both interval reliability and convex model reliability were investigated by changing relative positions between functions and uncertain parameters in calculations. Results indicated that convex model reliability approach was more appropriate in interval extension and was more flexible to respond the practical issues of projects than interval reliability approach. However, interval reliability approach was more conservative and could ensure safety when there was insufficient data.

参考文献/References:

[1] 纪冬梅,周昌玉.整体法兰可靠性优化设计[J].南京工业大学学报(自然科学版),2002,24(3):78.
[2] ELISHAKOFF I.Three versions of the finite element method based on concept of either stochasticity,fuzziness or anti-optimization[J].Applied mechanics review,1998,51:209.
[3] ELISHAKOFF I.Essay on uncertainties in elastic and viscoelastic structures:from A.M.Freudenthal’s criticisms to modem convex modeling[J].Computers & structures,1995,56(6):871.
[4] BEN-HEIM Y.A non-probabilistic concept of reliability[J].Structural safety,1994,14:227.
[5] 邱志平.非概率集合理论凸方法及其运用[M].北京:国防工业出版社,2005.
[6] 郭书祥,张陵,李颖.结构非概率可靠性指标的求解方法[J].计算力学学报,2005,22(2):227.
[7] 戴树和,王明娥.可靠性工程及其在化工设备中的应用[M].北京:化学工业出版社,1987.
[8] 代巧,周昌玉,潘林峰,等.压力容器筒体的非概率可靠性分析[J].机械设计与制造,2011,4:206.
[9] 矫立超,周昌玉,代巧,等.压力容器非概率可靠性设计方法[J].南京工业大学学报(自然科学版),2013,35(5):110.
[10] CHEN X W,HE X H,DAI Q,et al.Research on interval failure assessment diagram of industrially pure titanium TA2[C]//From Failure to Better Design,Manufacture and Construction,Jinan:East China University of Science and Technology Press,2012:223.
[11] THE AMERICAN SOCIETY of MECHANICAL ENGINEERS.ASME code for pressure piping process piping:ASME B31.3—2012[S].New Jersy:the American Society of Mechanical Engineers,2012.
[12] 中国国家标准化管理委员会.工业技术管道设计规范:GB50316—2008[S].北京:中华人民共和国原化学工业部,2008.

相似文献/References:

[1]矫立超,周昌玉,代巧,等.压力容器非概率可靠性设计方法[J].南京工业大学学报(自然科学版),2013,35(05):110.[doi:10.3969/j.issn.1671-7627.2013.05.021]
 JIAO Lichao,ZHOU Changyu,DAI Qiao,et al.Non-probabilistic reliability design of cylindrical shell pressure vessels[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2013,35(03):110.[doi:10.3969/j.issn.1671-7627.2013.05.021]

备注/Memo

备注/Memo:
收稿日期:2014-12-22
基金项目:国家自然科学基金(51002015,51075199)
作者简介:邵世飞(1988—),男,江苏南京人,硕士,主要研究方向为化工设备的可靠性; 周昌玉(联系人),教授,E-mail:changyu_zhou@163.com.
引用本文:邵世飞,周昌玉,常乐.压力管道应力强度非概率可靠性分析[J].南京工业大学学报(自然科学版),2016,38(3):44-49..
更新日期/Last Update: 2016-05-20