|本期目录/Table of Contents|

[1]马亚利,王璐,欧谨,等.温度荷载作用下GFRP-泡沫夹层结构Ⅱ型界面断裂韧性分析[J].南京工业大学学报(自然科学版),2017,39(03):90-95.[doi:10.3969/j.issn.1671-7627.2017.03.016]
 MA Yali,WANG Lu,OU Jin,et al.Analysis of modeⅡ interfacial fracture toughness of GFRP-foam sandwich structure under temperature loading[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2017,39(03):90-95.[doi:10.3969/j.issn.1671-7627.2017.03.016]
点击复制

温度荷载作用下GFRP-泡沫夹层结构Ⅱ型界面断裂韧性分析()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
39
期数:
2017年03期
页码:
90-95
栏目:
出版日期:
2017-05-20

文章信息/Info

Title:
Analysis of modeⅡ interfacial fracture toughness of GFRP-foam sandwich structure under temperature loading
文章编号:
1671-7627(2017)03-0090-06
作者:
马亚利王璐欧谨刘伟庆
南京工业大学 土木工程学院,江苏 南京 211800
Author(s):
MA YaliWANG LuOU JinLIU Weiqing
College of Civil Engineering,Nanjing Tech University,Nanjing 211800,China
关键词:
复合材料 夹层结构 端部开口弯曲试验 应变能释放率
Keywords:
composite materimal sandwich structure ENF strain energy release rate
分类号:
TB332
DOI:
10.3969/j.issn.1671-7627.2017.03.016
文献标志码:
A
摘要:
研究不同温度对玻璃纤维增强复合材料(GFRP)-泡沫夹层结构的Ⅱ型界面断裂韧性的影响,首先分析不同温度对GFRP以及聚氨酯泡沫的压缩性能的影响。再按照端部开口弯曲试件(ENF)的方法测量GFRP-泡沫夹层结构的荷载-位移曲线。试验结果表明:随着温度的升高,极限承载能力逐渐降低。通过能量释放率(G)判据来分析界面的分层情况,并基于试验现象和数据的进一步分析,计算出界面应变能释放率(G),通过不同温度下G值的比较发现:当温度升高时,界面的应变能释放率逐渐降低。
Abstract:
This paper studied the effects of different temperatures on glass fiber enhanced composite(GFRP)-foam sandwich structure of mode II interface fracture toughness,the first analysis of the different temperature of GFRP and polyurethane foam compression performance impact.The load-displacement curve of GFRP-foam sandwich structure by end notched flexure(ENF)method was measured.The experimental results showed that the ultimate bearing capacity gradually decreasedwith the increase inthe temperature.The stratification of the interface was analyzed byusing the energy release rate (G) criterion.Based on the experimental observation and data analysis,the interfacial strain energy release rate G was calculated.The strain energy release rate at the interface of G was decreased gradually with the increase of temperature by comparing the values of G.

参考文献/References:

[1] 王兴业,杨孚标,曾竟成,等.夹层结构复合材料设计原理及其应用[M].北京:化学工业出版社,2007.
[2] 方海,刘伟庆,万里.新型复合材料快速抢建抢修路面垫板[J].南京工业大学学报(自然科学版),2009,31(1):93.
[3] 唐桂云,王云飞,吴东辉,等.先进复合材料的无损检测[J].纤维复合材料,2006,23(1):33.
[4] 王鹏.复合材料Z-pin增强技术及力学性能研究[D].南京:南京航空航天大学,2011.
[5] 张雪霞,杨维阳.关于各向异性纤维复合材料板Ⅰ型、Ⅱ型裂纹尖端的应变能释放率[J].太原重型机械学院学报,2003,24(2):92.
  
[6] 高峰,矫桂琼,宁荣昌,等.层间颗粒增韧复合材料层压板的Ⅱ型层间断裂韧性[J].西北工业大学报,2005,23(2):184.
[7] MAJUMDAR P,SRINIVASAGUPTA D,MAHFUZ H,et al.Effect of Processing conditions and material properties on the debond fracture toughness of foam-core sandwich composites:experimental optimization[J].Composites part A:applied scienceand manufac-turing,2003,34(11):1097.
[8] KWON H,KIM H.Buckling and debond growth of partial debonds in adhesively bonded composite splice joints[J].Composite structures,2007,79(4):590.
[9] ZHANG Y,WANG S.Bucklingpost-buckling and delamination propagation in debonded composite laminates part 1:theoretical development[J].Composite structures,2009,88(1):121.
[10] ZHANG S,ZHANG Y.Buckling,post-buckling and delamination propagation in debonded composite laminates part 2:numerical applications[J].Composite structures,2009,88(1):131.
[11] SHINDO Y,NARITA F,SATO T.Analysis of mode II interlaminar fracture and damage behavior in end notched flexure testing of GFRP woven laminates at cryogenic temperatures[J].Acta mechanica,2006,187(1/2/3/4):231.
[12] SHINDO Y,TAKAHASHI S,TAKEDA T,et al.Mixed-mode interlaminar fracture and damage characterization in woven fabric-reinforced glass/epoxy composite laminates at cryogenic temperatures using the finite element and improved test methods[J].Engineering fracture mechanics,2008,75(18):5101.
[13] LIU J,ZHOU Z,MA L,et al.Temperature effects on the strength and crushing behavior of carbon fiber composite truss sandwich cores[J].Composites part B:engineering,2011,42(7):1860.
[14] GATES T S,SU X,ABD F,et al.Facesheet delamination of composite sandwich materials at cryogenic temperatures[J].Composites science and technology,2006,66(14):2423.
[15] BARRETT J D,FOSCHI R O.Mode II stress-intensity factors for cracked wood beams[J].Engineering fracture mechanics,1977,9(2):371.
[16] ASTM.D7905/D7905M-14:Standard test method for determination of the mode Ⅱ interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites[S].West Consho-hocken:ASTM International,2014.
[17] 于志成.复合材料Ⅱ型层间断裂韧性试验方法研究[J].航空材料学报,1997,17(4):56.
[18] DAVIES P,CASARI P,CARLSSON L A.Influence of fibre volume fraction on mode II interlaminar fracture toughness of glass/epoxy using the 4ENF specimen[J].Composites science and technology,2005,65(2):295.
[19] LIU J,ZHOU Z,MA L,et al.A study on mechanical behavior of the carbon fiber composite sandwich panel with pyramidal truss cores at different temperatures [J].Science china physics,mechnical and astronomy,2012,55(11):2135.
[20] DE MOURA M F S F,CAMPILHO R D S G,GONCALVES J P M.Pure mode II fracture characterization of composite bonded joints[J].International journal of solids and structures,2009,46(6):1589.
[21] BERRY J P.Determination of fracture energies by the cleavage technique[J].Journal of applied physics,1963,34(1):62.
[22] BLACKMAN B R K,BRUNNERA J,WILLIAMS J G.Mode Ⅱ fracture testing of composites:a new look at an old problem[J].Engineering fracture mechanics,2006,73(16):2443.
[23] 范天佑.断裂理论基础[M].北京:科学出版社,2003.
[24] 李庆芬.断裂力学及其工程应用(修订版)[M].哈尔滨:哈尔滨工程大学出版社,2008.
[25] IRWIN G R.Crack extension force for part-through crack in a plate[J].Journal of applied mechanics,1962,29(4):475.

相似文献/References:

[1]王晓东,朱辅华,黄培.聚酰亚胺聚四氟乙烯复合材料的制备和表征[J].南京工业大学学报(自然科学版),2011,33(04):16.[doi:10.3969/j.issn.1671-7627.2011.04.004]
 WANG Xiaodong,ZHU Fuhua,HUANG Pei.Preparation and characterization of PI-PTFE compsite materials[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2011,33(03):16.[doi:10.3969/j.issn.1671-7627.2011.04.004]
[2]朱波,周叮,刘伟庆.芯材增强对夹层圆柱壳屈曲性能的影响[J].南京工业大学学报(自然科学版),2011,33(05):100.[doi:10.3969/j.issn.1671-7627.2011.05.020]
 ZHU Bo,ZHOU Ding,LIU Weiqing.Effects of reinforcement on buckling of composite cylindrical shells[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2011,33(03):100.[doi:10.3969/j.issn.1671-7627.2011.05.020]
[3]李传江,顾伯勤,黄星路.横向压缩载荷下短纤维复合材料细观力学分析[J].南京工业大学学报(自然科学版),2012,34(02):120.[doi:doi:10.3969/j.issn.1671-7627.2012.02.025]
 LI Chuanjiang,GU Boqin,HUANG Xinglu.Micromechanics analysis of short fiber-reinforced composites under transverse compressive loads[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2012,34(03):120.[doi:doi:10.3969/j.issn.1671-7627.2012.02.025]
[4]崔运国,陆春华,张军,等.纳米SiO2/PMMA复合材料的光学性能[J].南京工业大学学报(自然科学版),2012,34(04):101.[doi:10.3969/j.issn.1671-7627.2012.04.020]
 CUI Yunguo,LU Chunhua,ZHANG Jun,et al.Optical properties of nano-SiO2/PMMA composite material[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2012,34(03):101.[doi:10.3969/j.issn.1671-7627.2012.04.020]
[5]宋艳江,章刚,朱鹏,等.玻璃纤维改性热塑性聚酰亚胺复合材料弯曲性能 (Ⅰ)——热处理工艺影响[J].南京工业大学学报(自然科学版),2008,30(02):15.[doi:10.3969/j.issn.1671-7627.2008.02.004]
 SONG Yan-jiang,ZHANG Gang,ZHU Peng,et al.Bending strength of TPI GF composites (Ⅰ) -influence of heat treatment[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2008,30(03):15.[doi:10.3969/j.issn.1671-7627.2008.02.004]
[6]徐洁,盛绪敏.陶瓷基质—SiC晶须复合材料[J].南京工业大学学报(自然科学版),1990,12(04):81.
 Xu Jie Sheng Xumin(Department of Silicate Engineering).CERAMIC MATRIX-SiC WHISKER COMPOSITES[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),1990,12(03):81.
[7]程可,马功勋.纤维增强复合梁Ⅰ型裂纹尖端凝合区模型[J].南京工业大学学报(自然科学版),1998,20(04):94.
 Cheng Ke Ma Gongxun Department of Mechanical Engineering,Nanjing University of Chemical Technology,Nanjing0009,et al.MODEL FOR COHESIVE ZONE OF TOP OF TYPE Ⅰ CRACK IN FIBRE REINFORCED COMPOSITE BEAM[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),1998,20(03):94.
[8]王志远,沈 旭,俞 娟,等.纳米炭黑/聚酰亚胺复合材料在不同工况条件下的摩擦磨损性能[J].南京工业大学学报(自然科学版),2015,37(02):18.
 WANG ZhiyuanSHEN XuYU JuanGU HepingWANG XiaodongHUANG Pei.Friction and wear performance of nanometer carbon black/polyimide composite material on different working conditions[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2015,37(03):18.
[9]张富宾,刘伟庆,齐玉军,等.腹板对复合材料夹层梁抗扭性能影响分析[J].南京工业大学学报(自然科学版),2015,37(01):70.[doi:10.3969/j.issn.1671-7627.2015.01.013]
 ZHANG Fubin,LIU Weiqing,QI Yujun,et al.Torsion analysis on composite sandwich beams with web configurations[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2015,37(03):70.[doi:10.3969/j.issn.1671-7627.2015.01.013]
[10]陈立立,顾伯勤,张斌,等.芳纶纤维表面涂层制备及其黏弹性表征[J].南京工业大学学报(自然科学版),2016,38(03):19.[doi:10.3969/j.issn.1671-7627.2016.03.004]
 CHEN Lili,GU Boqin,ZHANG Bin,et al.Preparation and viscoelasticity characterization of aramid fiber with surface coating[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2016,38(03):19.[doi:10.3969/j.issn.1671-7627.2016.03.004]
[11]刘杨,曾卓,陆晓峰,等.空爆载荷下点阵夹层结构式舱壁安装方式研究[J].南京工业大学学报(自然科学版),2017,39(04):79.[doi:10.3969/j.issn.1671-7627.2017.04.014]
 LIU Yang,ZENG Zhuo,LU Xiaofeng,et al.Installation research of lattice sandwich structure bulkheads under blast loading[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2017,39(03):79.[doi:10.3969/j.issn.1671-7627.2017.04.014]
[12]史慧媛,刘伟庆,方海.复合材料夹层结构的疲劳损伤性能[J].南京工业大学学报(自然科学版),2017,39(05):1.[doi:10.3969/j.issn.1671-7627.2017.05.001]
 SHI Huiyuan,LIU Weiqing,FANG Hai.Fatigue damage behavior of composite sandwich structure[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2017,39(03):1.[doi:10.3969/j.issn.1671-7627.2017.05.001]

备注/Memo

备注/Memo:
收稿日期:2016-11-26
基金项目:国家自然科学青年基金(51408305); 江苏省自然科学基金(BK20140946); 国家自然科学基金重点项目(51238003)
作者简介:马亚利(1991—),女,江苏连云港人,硕士,主要研究方向为新型复合材料结构; 王璐(联系人),副教授,E-mail:keivnlwang@hotmail.com.
引用本文:马亚利,王璐,欧谨,等.温度荷载作用下GFRP-泡沫夹层结构Ⅱ型界面断裂韧性分析[J].南京工业大学学报(自然科学版),2017,39(3):90-95..
更新日期/Last Update: 2017-05-31