|本期目录/Table of Contents|

[1]陈波,温卫东,孙煦泽,等.三维编织碳/碳复合材料高温力学及疲劳试验研究[J].南京工业大学学报(自然科学版),2018,40(01):8-16.[doi:10.3969/j.issn.1671-7627.2018.01.002]
 CHEN Bo,WEN Weidong,SUN Xuze,et al.Experimental investigation on fatigue of 3D braided C/C composites at high temperatures[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2018,40(01):8-16.[doi:10.3969/j.issn.1671-7627.2018.01.002]
点击复制

三维编织碳/碳复合材料高温力学及疲劳试验研究()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
40
期数:
2018年01期
页码:
8-16
栏目:
出版日期:
2018-01-20

文章信息/Info

Title:
Experimental investigation on fatigue of 3D braided C/C composites at high temperatures
文章编号:
1671-7627(2018)01-0008-09
作者:
陈波温卫东孙煦泽崔海涛张宏建
南京航空航天大学 能源与动力学院 江苏省航空动力重点实验室,江苏 南京 210016
Author(s):
CHEN BoWEN WeidongSUN XuzeCUI HaitaoZHANG Hongjian
Jiangsu Province Key Laboratory of Aerospace Power Systems,College of Energy & Power Engineering, Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
关键词:
三维编织 碳/碳复合材料 高温 拉伸 疲劳
Keywords:
3D braided carbon/carbon composites high temperature tensile fatigue
分类号:
TB332
DOI:
10.3969/j.issn.1671-7627.2018.01.002
文献标志码:
A
摘要:
在大气环境下,对有抗氧化涂层的非切边和切边三维(3D)四向碳/碳复合材料在室温、800和900 ℃下进行编织纵向拉伸试验,得到了相应工况下的弹性模量、拉伸强度以及应力-应变曲线; 在800 ℃下对两种试件进行编织纵向拉/拉疲劳试验,得到了疲劳寿命数据以及剩余刚度随循环载荷的变化规律。采用扫描电子显微镜(SEM)对破坏后的试件断口进行观察研究,分析材料拉伸破坏机制以及疲劳破坏机制。结果表明:三维四向碳/碳复合材料的拉伸强度和弹性模量随着温度的升高而增大,非切边试件的力学性能优于切边试件; 三维四向碳/碳复合材料剩余刚度随循环载荷先增加而后减小; 材料的拉伸破坏形式以纤维拉伸为主,温度升高后,断口出现纤维束成簇拔出现象,疲劳破坏形式以纤维拉伸为主并伴随一定的纤维簇拔出和基体分层现象。
Abstract:
The braided longitudinal tensile test of anti-oxidation coating coated non-trimming and trimming 3D four directional carbon/carbon(C/C)composites were investigated.The strength,elastic modulus and stress-strain curves were obtained in atmospheric environment at room temperature,800 and 900 ℃.The fatigue life data and residual stiffness with cyclic loading were obtained from the braided longitudinal tensile/tensile fatigue test for two kinds of specimens when temperature raised to 800 ℃.The static tensile and fatigue specimen fractures were observed by scaning electron microscope(SEM).Tensile failed mechanism and tensile/tensile fatigue failed mechanism were analyzed.Results showed that the tensile strength became higher with temperature increase,and the mechanical property of non-trimming specimens was much better than that of trimming ones.The residual stiffness of 3D four directional C/C composites first increased and then decreased.The main failed mode of specimen was fiber tensile,but bundles of fibers pulled out when temperature elevated.More pull-out fiber in fatigue failed than tensile failed at the same temperature,and the matrix was delaminated obviously under fatigue load.

参考文献/References:

[1] HATTA H.Strength improvement by densification of C/C composites[J].Carbon,2001,39(1):83.
[2] 李成功,傅恒志.航空航天材料[M].北京:国防工业出版社,2002.
[3] 李贺军.碳/碳复合材料[J].新型炭材料,2001,2(16):79.
[4] 杨尊社,卢刚认,曲德全,等.C/C复合材料的磷酸盐与硼系涂料的防氧化研究[J].材料保护,2001,34(3):12.
[5] 肖志超,薛宁娟,苏君明,等.C/C复合刹车材料防氧化涂层的性能[J].新型炭材料,2010,25(2):156.
[6] 武保华,刘春立,张涛,等.碳/碳复合材料超高温力学性能测试研究[J].宇航材料工艺,2001(6):67.
[7] 韩红梅,张秀莲,李贺军,等.炭/炭复合材料高温力学行为研究[J].新型炭材料,2003,18(1):20.
[8] 韩红梅,李贺军,李克智,等.高温对碳/碳复合材料性能影响的研究[J].西北工业大学学报,2003,21(3):352.
[9] 易法军,韩杰才,杜善义.混杂碳/碳复合材料超高温力学性能实验研究[J].复合材料学报,2003(2):118.
[10] 袁辉.碳/碳复合材料刚度与强度预测模型研究[D].南京:南京航空航天大学,2009.
[11] LIU C,CHENG L,LUAN X,et al.Real-time damage evaluation of a SiC coated carbon/carbon composite under cyclic fatigue at high temperature in an oxidizing atmosphere[J].Materials science and engineering,2009,524(1):98.
[12] 冯志海,李同起,杨云华,等.碳纤维在高温下的结构、性能演变研究[J].中国材料进展,2012,31(8):7.
[13] 杜双明,乔生儒,纪岗昌,等.3D-C/SiC 复合材料在室温和1 300 ℃的拉-拉疲劳行为[J].材料工程,2002(9):22.
[14] ALY-HASSAN M S,HATTA H,WAKAYAMA S,et al.Comparison of 2D and 3D carbon/carbon composites with respect to damage and fracture resistance[J].Carbon,2003,41(5):1069.
[15] DOUARCHE N,ROUBY D,PEIX G,et al.Relations between X-ray tomography,density and mechanical properties in carbon-carbon composites[J].Carbon,2001,39(6):1455.
[16] SPRINGER G S.Model for predicting the mechanical properties of composites at elevated temperatures[J].Journal of reinforced plastics and composites,1984,3(1):85.
[17] DUTTA P K,HUI D.Creep rupture of a GFRP composite at elevated temperatures[J].Computers and structures,2000,76(1):153.
[18] 史慧媛,刘伟庆,方海.复合材料夹层结构的疲劳损伤性能[J].南京工业大学学报(自然科学版),2017,39(5):1.
[19] 霍瑞丽,刘伟庆,王璐,等.环境温湿度对泡沫复合材料夹层结构界面性能的影响[J].南京工业大学学报(自然科学版),2017,39(5):39.
[20] 曹振民,王璐,刘伟庆.温度影响下泡沫填充复合材料筒体的吸能特性[J].南京工业大学学报(自然科学版),2017,39(5):120.
[21] 国家技术监督局.定向纤维增强塑料拉伸性能试验方法:GB/T 3354—1999[S].北京:中国标准出版社,1999.

备注/Memo

备注/Memo:
收稿日期:2017-09-31
基金项目:江苏省普通高校研究生科研创新计划(KYLX_0238); 中央高校基本科研基金(1002-56XQA15002)
作者简介:陈波(1986—),男,内蒙古乌海人,博士生,主要研究方向为先进复合材料结构设计技术; 温卫东(联系人),教授,E-mail:gswwd@nuaa.edu.cn.
引用本文:陈波,温卫东,孙煦泽,等.三维编织碳/碳复合材料高温力学及疲劳试验研究[J].南京工业大学学报(自然科学版),2018,40(1):8-16..
更新日期/Last Update: 2018-01-18