|本期目录/Table of Contents|

[1]金小贤,刘强,杨佳辉,等.不锈钢微滤膜的孔径分析[J].南京工业大学学报(自然科学版),2018,40(01):52-59.[doi:10.3969/j.issn.1671-7627.2018.01.009]
 JIN Xiaoxian,LIU Qiang,YANG Jiahui,et al.Pore size measurement of microporous stainless steel membranes[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2018,40(01):52-59.[doi:10.3969/j.issn.1671-7627.2018.01.009]
点击复制

不锈钢微滤膜的孔径分析()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
40
期数:
2018年01期
页码:
52-59
栏目:
出版日期:
2018-01-20

文章信息/Info

Title:
Pore size measurement of microporous stainless steel membranes
文章编号:
1671-7627(2018)01-0052-08
作者:
金小贤刘强杨佳辉黄彦
南京工业大学 化工学院 材料化学工程国家重点实验室,江苏 南京 210009
Author(s):
JIN XiaoxianLIU QiangYANG JiahuiHUANG Yan
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering,Nanjing Tech University,Nanjing 210009,China
关键词:
孔径 不锈钢微滤膜 润湿剂 泡点法 操作模式
Keywords:
pore size stainless steel microporous membrane wetting agent bubble point method operation mode
分类号:
TQ028.8
DOI:
10.3969/j.issn.1671-7627.2018.01.009
文献标志码:
A
摘要:
以商用湿润剂GQ-16、丙三醇、无水乙醇与纯水4种液体为润湿剂,采用气体泡点法测定不锈钢微滤膜的最大孔径、平均孔径及孔径分布,考察操作模式、润湿剂、浸润时间及不锈钢膜结构对测试结果的影响,通过扫描电子显微镜(SEM)和金相显微镜观察样品的表面和断面形貌,采用图像分析法测定润湿剂与不锈钢材料的接触角。结果表明:纯水对不锈钢膜样品的浸润性较差,所测样品孔径偏大,不宜用作润湿剂。乙醇可用于样品最大孔的测量,其挥发性会导致所测平均孔径偏大。采用丙三醇作润湿剂时,由于其黏度较高,测试前需要适当延长不锈钢膜的浸润时间,测试时应采用湿上/干下的操作模式,且只宜测量较大孔径的材料。综合对比4种润湿剂所给出的分析结果,润湿剂GQ-16的使用效果最好。均质结构不锈钢膜的测试面对孔径测试结果几乎没有影响,但在测试具有非对称结构的不锈钢微滤膜时,应以膜面为进气侧,否则润湿剂的流动阻力可能导致孔径测试结果偏小。
Abstract:
Four liquids of commercial wetting agent GQ-16,glycerol,ethanol and water were employed as the wetting agents,and the microporous stainless steel membrane disks with different structures were tested by bubble point method to investigate their largest and average pore sizes as well as the pore size distribution.The effects of the operation mode,the wetting agent,the wetting time and the membrane structure on the testing results were studied.The surface and cross-sectional morphologies of the samples were observed through scanning electron microscope(SEM)and metallographic microscopes.The droplet contact angles of the wetting agents on the corresponding stainless steel materials were measured by image analyzing method.Results showed that the pure water was unsuitable as a wetting agent because of its poor wet ability against the stainless steel,and it would lead to a larger testing result.Ethanol could be used as a wetting agent in testing the largest pore size,whereas its high volatility would incorrectly make the testing pore sizes larger than their actual ones.When glycerol was employed as the wetting agent,the stainless steel membrane samples should be soaked for a longer time to ensure sufficient wetting before testing.Because of the high viscosity of the glycerol,the wet-up/dry-down mode should be operated and be applicable for testing larger pores.It could be concluded by comparison among all the testing results that GQ-16 was the best wetting agent.Almost no influence of the front/back side testing was observed on the stainless steel membranes with symmetric structure,while those with asymmetric structure should be tested with a gas feeding from the membrane layer to the substrate,otherwise the flow resistance of the wetting agent would lead to a migration of the pore size distribution toward smaller pore sizes.

参考文献/References:

[1] WYART Y,GEORGES G,DEUMIE C,et al.Membrane characterization by microscopic methods:multiscale structure[J].Journal of membrane science,2008,315(1):82.
[2] ZIEL R,HAUS A,TULKE A.Quantification of the pore size distribution(porosity profiles)in microfiltration membranes by SEM,TEM and computer image analysis[J].Journal of membrane science,2008,323(2):241.
[3] REINGRUBER H,ZANKEL A,MAYRHOFER C,et al.Quantitative characterization of microfiltration membranes by 3D reconstruction[J].Journal of membrane science,2011,372(1):66.
[4] PRADANOS P,RODRIGUEZ M L,CALVO J I,et al.Structural characterization of an UF membrane by gas adsorption-desorption and AFM measurements[J].Journal of membrane science,1996,117(1):291.
[5] KALLIOINEN M,NYSYSTROM M.Membrane surface characterization[M]//Advanced Membrane Technology and Applications.[S.l]:John Wiley & Sons Inc.,2008:841.
[6] HERNANDEZ A,CALVO J I,PRADANOS P,et al.Pore size distributions in microporous membranes:a critical analysis of the bubble point extended method[J].Journal of membrane science,1996,112(1):1.
[7] JENA A,GUPTA K.Characterization of pore structure of filtration media[J].Fluid/particle separation journal,2002,14(3):227.
[8] KORELSKIY D,GRAHN M,MOUZON J,et al.Characterization of flow-through micropores in MFI membranes by permporometry[J].Journal of membrane science,2012,417-148(2):183.
[9] 黄培,徐南平,时钧.液体排除法测定多孔陶瓷膜孔径分布[J].南京化工大学学报(自然科学版),1998,20(3):45.
[10] KORELSKIY D,YE P,ZHOU H,et al.An experimental study of micropore defects in MFI membranes[J].Microporous and mesoporous materials,2014,186:194.
[11] YU J,HU X J,HUANG Y.A modification of the bubble-point method to determine the pore-mouth size distribution of porous materials[J].Separation and purification technology,2010,70(3):314.
[12] ARKHANGELSKY E,DUEK A,GITIS V.Maximal pore size in UF membranes[J].Journal of membrane science,2012,394-395(S):89.
[13] JENA A,GUPTA K.An innovative technique for pore structure analysis of fuel cell and battery components using flow porometry[J].Journal of power sources,2001,96(1):214.
[14] JENA A,GU K.Advances in pore structure evaluation by porometry[J].Chemical engineering & technology,2010,33(8):1241.
[15] American Society for Testing and Materials.Standard test methods for pore size characteristics of membrane filters by bubble point and mean flow pore test:ASTM F316-03—2011[S].West Conshohocken:ASTM International,2011.
[16] American Society for Testing and Materials.Standard test method for pore size characteristics of membrane filters using automated liquid porosimeter:ASTM E1294—1999[S].West Conshohocken:ASTM International,1999.
[17] GIGOVA A.Investigation of the porous structure of battery separators using various porometric methods[J].Journal of power sources,2006,158(2):1054.
[18] VENKATARAMAN K,CHOATE W T,TORRE E R,et al.Characterization studies of ceramic membranes:a novel technique using a coulter porometer[J].Journal of membrane science,1988,39(3):259.
[19] 黄培,邢卫红,徐南平,等.气体泡压法测定无机微滤膜孔径分布研究[J].水处理技术,1996,22(2):80.
[20] 张艳萍,潘献辉,王旭亮,等.中空纤维微滤膜孔径检测方法研究[J].膜科学与技术,2013,33(3):97.
[21] HOPKINSON D,ZEH M,LUEBKE D.The bubble point of supported ionic liquid membranes using flat sheet supports[J].Journal of membrane science,2014,468:155.
[22] 鲁伟涛,何南霏,靳向煜.正反面对泡点法测定多层复合多孔材料孔径的影响[J].产业用纺织品,2014(4):40.

相似文献/References:

[1]黄培,徐南平,时钧.液体排除法测定多孔陶瓷膜孔径分布[J].南京工业大学学报(自然科学版),1998,20(03):45.
 Huang Pei Xu Nanping Shi Jun Department of Chemical Engineering,Nanjing University of Chemical Technology,Nanjing0009,et al.PORE SIZE DISTRIBUTION DETERMINATION OF INORGANIC MEMBRANES BY LIQUID LIQUID DISPLACEMENT POROMETRY[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),1998,20(01):45.

备注/Memo

备注/Memo:
收稿日期:2016-04-28
基金项目:国家高技术研究发展计划(863计划)(2009AA05Z103); 江苏省高校优势学科建设工程
作者简介:金小贤(1991—),女,河南南阳人,硕士,主要研究方向为膜分离; 黄彦(联系人),教授,E-mail:huangy@njtech.edu.cn.
引用本文:金小贤,刘强,杨佳辉,等.不锈钢微滤膜的孔径分析[J].南京工业大学学报(自然科学版),2018,40(1):52-59..
更新日期/Last Update: 2018-01-18