|本期目录/Table of Contents|

[1]林凯,童艳,彭俊欢,等.高大空间热分层实测和自然通风潜力分析[J].南京工业大学学报(自然科学版),2018,40(03):95-104.[doi:10.3969/j.issn.1671-7627.2018.03.016]
 LIN Kai,TONG Yan,PENG Junhuan,et al.Field measurements on thermal stratification and cooling potential of natural ventilation for high and large spaces[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2018,40(03):95-104.[doi:10.3969/j.issn.1671-7627.2018.03.016]
点击复制

高大空间热分层实测和自然通风潜力分析()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
40
期数:
2018年03期
页码:
95-104
栏目:
出版日期:
2018-05-20

文章信息/Info

Title:
Field measurements on thermal stratification and cooling potential of natural ventilation for high and large spaces
文章编号:
1671-7627(2018)03-0095-10
作者:
林凯童艳彭俊欢霍德凯王昶舜
南京工业大学 城市建设学院,江苏 南京 210009
Author(s):
LIN KaiTONG YanPENG JunhuanHUO DekaiWANG Changshun
College of Urban Construction,Nanjing Tech University,Nanjing 210009,China
关键词:
高大空间 热分层 上部开口 热压通风
Keywords:
large space thermal stratification upper openings thermal pressure ventilation
分类号:
TU834.5
DOI:
10.3969/j.issn.1671-7627.2018.03.016
文献标志码:
A
摘要:
在自然通风建筑中,垂直方向上温度分布影响着热压通风。现对南京某单体大空间自然通风建筑垂直方向上温度进行实测,得出在九月份垂直温度呈线性变化,梯度在0.1~0.24 ℃/m范围内。将温度分层结合已有的热压模型,通过CFD模拟验证模型准确性,用Matlab计算分析建筑上下开口比Rab、室内热源q和垂直温度系数α对室内温度和自然通风量的影响,发现室内温度随着建筑上下开口比Rab和室内热源q的增大而增大,随着垂直温度系数α的增大而减小; 建筑的自然通风量受室外温度影响较小,随着上下开口比Rab、室内热源q和垂直温度系数α的减小而减小。计算某高大空间在南京、重庆和广州各月的热压通风量和室内温度,结合热舒适模型确定满足基准通风量和热舒适要求的可利用上下开口比Rab范围和各月热舒适时数。结果表明:广州利用自然通风达到热舒适的时数最多,可利用的上下开口比Rab为1~9,室内热舒适时数占各月总时数的比例为35%~70%。
Abstract:
In naturally ventilated buildings,temperature distributions in vertical directions have much influence on the thermal pressure ventilation.Field tests were done on a single naturally ventilated large space during September at Nanjing in China.Results indicated that temperatures increased linearly towards the ceiling with its gradient being in range of 0.1-0.24 ℃/m.The stack effect model was modified by introducing the thermal stratification and validated by CFD simulation.Matlab codes were used to solve the model and to investigate different lower-upper opening area ratios Rab,heat sources q and temperature gradients α,finding out its influences on the thermal pressure ventilation.Results showed that occupied air temperatures increased with the increasing of lower-upper opening area ratio Rab or heat source q but with the decreasing of temperature gradient coefficient α,the outdoor climate did little influence on the ventilation flow rate,the ventilation flow rates declined with the decreasing of α or q.Occupied air temperatures and the ventilation flow rates were obtained for three cities in China to get the available Rab under thermal stratification model and benchmark ventilation rate.Guangzhou was of the highest occupied temperatures under the same Rab,q and α.The available Rab combined the thermal comfort and benchmark ventilation rateissues which averaged from 1 to 9.Also,the satisfied hourly number frequencies averaged from 35% to 70%.

参考文献/References:

[1] 清华大学建筑节能中心.中国建筑节能年度发展研究报告2013[R].北京:中国建筑工业出版社,2013.
[2] 许锦峰,黄欣鹏,吴志敏.被动式节能建筑围护结构的技术特征[J].南京工业大学学报(自然科学版),2011,38(4):119.
[3] LOMAS K J,COOK M J,FIALA D.Low energy architecture for a severe US climate:design and evaluation of a hybrid ventilation strategy [J].Energy and buildings,2007,39(1):32.
[4] SCHULZE T,EICHER U.Controlled natural ventilation for energy efficient buildings[J].Energy and buildings,2013,56(1):221.
[5] El-AGOUZ S A.The effect of internal heat source and opening l ℃ations on environmental natural ventilation[J].Energy and buildings,2008,40(1):409.
[6] LIN J T,CHUAH Y K.A study on the potential of natural ventilation and cooling for large spaces in subtropical climatic regions[J].Building and environment,2011,46(1):89.
[7] HUANG C,ZOU Z,LI M,et al.Measurements of indoor thermal environment and energy analysis in a large space building in typical seasons[J].Building and environment,2007,42(5):1869.
[8] SAID M N A,MACDONALD R A,DURRANT G C.Measurement of thermal stratification in large single-cell buildings[J].Energy and buildings,1996,24(1):105.
[9] PAN Y Q,LI Y M,HUANG Z Z,et al.Study on simulation methods of atrium building cooling load in hot and humid regions[J].Energy and buildings,2010,42:1654.
[10] ZHAI Z J,JOHNSON M H,KRARTI M.Assessment of natural and hybrid ventilation models in whole-building energy simulations[J].Energy and buildings,2011,43(9):2251.
[11] 孙一坚,沈恒根.工业通风[M].4版.北京:中国建筑工业出版社,2010.
[12] 中国气象局气象信息中心气象资料室,清华大学建筑技术科学系.中国建筑热环境分析专用气象数据集[M].北京:中国建筑工业出版社,2005.
[13] DEAR R J,BRAGER G S.Thermal comfort in naturally ventilated buildings:revisions to ASHRAE Standard 55[J].Energy and buildings,2002,34(6):549.

备注/Memo

备注/Memo:
收稿日期:2016-12-15
基金项目:江苏省博士后科研资助计划(1501066B)
作者简介:林凯(1992—),男,江苏盱眙人,硕士,主要研究方向为建筑节能; 童艳(联系人),副教授,E-mail:njtongyan@njtech.edu.cn.
引用本文:林凯,童艳,彭俊欢,等.高大空间热分层实测和自然通风潜力分析[J].南京工业大学学报(自然科学版),2018,40(3):95-104..
更新日期/Last Update: 2018-05-31