|本期目录/Table of Contents|

[1]刘巧云,贝新卫,刘晓敏,等.锂离子电池的热效应分析[J].南京工业大学学报(自然科学版),2020,42(01):18-26.[doi:10.3969/j.issn.1671-7627.2020.01.003]
 LIU Qiaoyun,BEI Xinwei,LIU Xiaomin,et al.Thermal analysis of lithium-ion batteries[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2020,42(01):18-26.[doi:10.3969/j.issn.1671-7627.2020.01.003]
点击复制

锂离子电池的热效应分析()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
42
期数:
2020年01期
页码:
18-26
栏目:
出版日期:
2020-01-13

文章信息/Info

Title:
Thermal analysis of lithium-ion batteries
文章编号:
1671-7627(2020)01-0018-09
作者:
刘巧云贝新卫刘晓敏杨晖
南京工业大学 材料科学与工程学院,江苏 南京 211800
Author(s):
LIU Qiaoyun BEI Xinwei LIU Xiaomin YANG hui
College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China
关键词:
锂离子电池 电化学-热耦合模型 散热系统 热效应 相变材料
Keywords:
lithium-ion battery electrochemical-thermal coupled model heat dissipation system thermal effect phase change material
分类号:
TM911
DOI:
10.3969/j.issn.1671-7627.2020.01.003
文献标志码:
A
摘要:
以26650型圆柱形磷酸铁锂离子电池为原型,建立电化学-热耦合模型。研究放电倍率对电池热行为的影响。结果表明:低倍率下电池处于吸热状态,电池内部温度反而低于外部; 高倍率下电池一直是放热状态,内部温度一直高于外部。为了控制高倍率放电过程中电池模块的温度,比较讨论风冷散热和相变材料散热系统,最终发现具有0.01 m/s的微胶囊型相变材料散热系统降温效果最为显著,电池模块温度被控制在50 ℃以下。
Abstract:
An electrochemical-thermal coupled model was developed for a cylindrical LiFePO4/graphite lithium-ion cell(26650). The effect of discharge rate on thermal behavior of batteries was investigated. Results showed that the battery was endothermic and temperature inside the battery was lower than that outside at low rate discharge, and the phenomenon was opposite at high rate discharge. In order to cool the battery module at the high rate discharge, the air cooling system and the phase change material(PCM)heat dissipation system were discussed. It was found that the flowing microcapsule PCM with 0.01 m/s could control the maximum temperature under 50 ℃.

参考文献/References:

[1] 余勇,陈云超,王国静,等.微反应器共沉淀法制备LiCoPO4/C及其电化学性能[J].南京工业大学学报(自然科学版),2017,39(4):26.
[2] 陈云超,余勇,王国静,等.微通道反应器-固相法制备锂离子电池正极材料LiMnPO4/C[J].南京工业大学学报(自然科学版),2017,39(3):16.
[3] 王国静.微反应器辅助合成磷酸锰铁锂正极材料的研究[D].南京:南京工业大学,2017.
[4] ABADA S,MARLAIR G,LECOCQ A,et al.Safety focused modeling of lithium-ion batteries:a review[J].Journal of Power Sources,2016,306:178.
[5] FENG X N,FANG M,HE X M,et al.Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry[J].Journal of Power Sources,2014,255:294.
[6] WANG T,TSENG K J,ZHAO J Y,et al.Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies[J].Applied Energy,2014,134:229.
[7] MALIK M,DINCER I,ROSEN M A.Review on use of phase change materials in battery thermal management for electric and hybrid electric vehicles[J].International Journal of Energy Research,2016,40(8):1011.
[8] RAMADESIGAN V,NORTHROP P W C,DE S,et al.Modeling and simulation of lithium-ion batteries from a systems engineering perspective[J].Journal of the Electrochemical Society,2012,159(3):R31.
[9] JIANG F M,PENG P,SUN Y Q.Thermal analyses of LiFePO4/graphite battery discharge processes[J].Journal of Power Sources,2013,243:181.
[10] RAO Z H,WANG S F.A review of power battery thermal energy management[J].Renewable and Sustainable Energy Reviews,2011,15(9):4554.
[11] CAI L,WHITE R E.Mathematical modeling of a lithium ion battery with thermal effects in COMSOL Inc.Multiphysics(MP)software[J].Journal of Power Sources,2011,196(14):5985.
[12] GUO M,WHITE R E.Mathematical model for a spirally-wound lithium-ion cell[J].Journal of Power Sources,2014,250:220.
[13] 孙秋娟,王青松,平平,等.循环充放电条件下锂离子电池的温度模拟[J].新能源进展,2014,2(4):315.
[14] SOUAYFANE F,FARDOUN F,BIWOLE P H.Phase change materials(PCM)for cooling applications in buildings:a review[J].Energy and Buildings,2016,129:396.
[15] BOSE P,AMIRTHAM V A.A review on thermal conductivity enhancement of paraffinwax as latent heat energy storage material[J].Renewable and Sustainable Energy Reviews,2016,65:81.
[16] YAN J J,WANG Q S,LI K,et al.Numerical study on the thermal performance of a composite board in battery thermal management system[J].Applied Thermal Engineering,2016,106:131.
[17] 张艳来,李秀平,饶中浩,等.相变材料微胶囊流体相变化过程流体内部流态的变化[J].工程热物理学报,2014,35(7):1382.

相似文献/References:

[1]汪敏,杨猛,马立群,等.Ti掺杂对锂离子电池正极材料Li2FeSiO4结构及电化学性能影响[J].南京工业大学学报(自然科学版),2016,38(02):64.[doi:10.3969/j.issn.1671-7627.2016.02.013]
 WANG Min,YANG Meng,MA Liqun,et al.Effects of Ti doping on structure and electrochemical properties of cathode material Li2FeSiO4 for Li-ion battery[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2016,38(01):64.[doi:10.3969/j.issn.1671-7627.2016.02.013]
[2]余勇,陈云超,王国静,等.微反应器-共沉淀法制备LiCoPO4/C及其电化学性能[J].南京工业大学学报(自然科学版),2017,39(04):26.[doi:10.3969/j.issn.1671-7627.2017.04.005]
 YU Yong,CHEN Yunchao,WANG Guojin,et al.Preparation and electrochemical property of LiCoPO4/C by micro-reactor and co-precipitation method[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2017,39(01):26.[doi:10.3969/j.issn.1671-7627.2017.04.005]
[3]王国静,陈云超,梁凯,等.微反应器辅助合成磷酸锰铁锂正极材料[J].南京工业大学学报(自然科学版),2018,40(03):1.[doi:10.3969/j.issn.1671-7627.2018.03.001]
 WANG Guojing,CHEN Yunchao,LIANG Kai,et al.Lithium iron manganese phosphate cathode from the precursors precipitated via a micro-reactor method[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2018,40(01):1.[doi:10.3969/j.issn.1671-7627.2018.03.001]

备注/Memo

备注/Memo:
收稿日期:2018-06-05
基金项目:国家自然科学基金(21573109)
作者简介:刘巧云(1991—),女,E-mail:759212586@qq.com; 杨晖(联系人),教授,E-mail:yanghui@njtech.edu.cn.
引用格式:刘巧云,贝新卫,刘晓敏,等.锂离子电池的热效应分析[J].南京工业大学学报(自然科学版),2020,42(1):18-26.
LIU Qiaoyun, BEI Xinwei, LIU Xiaomin, et al. Thermal analysis of lithium-ion batteries[J].Journal of Nanjing Tech University(Natural Science Edition),2020,42(1):18-26..
更新日期/Last Update: 2020-01-30