|本期目录/Table of Contents|

[1]刘中海,高赛男,秦冬玲,等.改性分子筛催化果糖脱水制5-羟甲基糠醛[J].南京工业大学学报(自然科学版),2020,42(01):56-61.[doi:10.3969/j.issn.1671-7627.2020.01.008]
 LIU Zhonghai,GAO Sainan,QIN Dongling,et al.Modified molecular sieves for catalytic dehydration of fructose to 5-hydroxymethylfurfural[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2020,42(01):56-61.[doi:10.3969/j.issn.1671-7627.2020.01.008]
点击复制

改性分子筛催化果糖脱水制5-羟甲基糠醛()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
42
期数:
2020年01期
页码:
56-61
栏目:
出版日期:
2020-01-13

文章信息/Info

Title:
Modified molecular sieves for catalytic dehydration of fructose to 5-hydroxymethylfurfural
文章编号:
1671-7627(2020)01-0056-06
作者:
刘中海高赛男秦冬玲杨刚
南京工业大学 化工学院 材料化学工程国家重点实验室,江苏 南京 211800
Author(s):
LIU Zhonghai GAO Sainan QIN Dongling YANG Gang
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
关键词:
SAPO-34分子筛 分子筛改性 果糖脱水 5-羟甲基糠醛
Keywords:
SAPO-34 molecular sieve molecular sieve modification fructose dehydration 5-hydroxymethylfurfural目前世界上约86%的燃料和96%的化学品是由不可再生资源生产的[1]。随着能源的枯竭及气候变化近年来对可再生资源转化为绿色化学品的研究引起越来越广泛的关注。每年通过光合作用产出的生物质达1.7亿t[2]丰富的生物质是可以替代燃料和有价值化学品的一种具有前景的可再生资源。目前大部分的生物质被用于生产液体燃料如乙醇少部分用于生产高附加值衍生产品[3]。在众多的生物质衍生的化学品中5-羟甲基糠醛(5-HMF)是一种重要的生物质平台化合物其被称为“沉睡的巨人”。它的分子式中含有一个醛基和羟基化学性质活泼可通过水解、氧化、加氢等化学反应合成多种重要的化学品如25-呋喃二甲酸(FDCA)、乙酰丙酸(LA)和25-二甲基呋喃(DMF)等[4]应用前景非常广阔。
分类号:
TQ426.6
DOI:
10.3969/j.issn.1671-7627.2020.01.008
文献标志码:
A
摘要:
采用离子交换法制备Sn、Cu、Fe改性的SAPO-34分子筛,通过扫描电子显微镜(SEM)、X线衍射仪(XRD)、N2物理吸附、NH3程序升温脱附(NH3-TPD)和X线荧光光谱仪(XRF)对改性后的催化剂进行形貌和结构表征。将改性前后的催化剂用于果糖脱水制5-羟甲基糠醛(5-HMF)反应中,考察反应时间、反应介质、催化剂使用量对产物产率的影响。结果表明:改性后的样品表面聚集了无定形颗粒,结晶度、孔容和酸性有所下降; 以Sn-SAPO-34作为催化剂,在30 mL二甲基亚砜溶剂中添加0.25 g催化剂、1 g果糖,反应1 h后,转化率可达99.5%,5-HMF的产率为47.7%。在最优条件下将催化剂重复使用5次,产率有所下降,经过分离焙烧后再使用,产率可恢复至原来的水平。
Abstract:
Three kinds of metal Sn, Cu and Fe modified SAPO-34 were prepared with ion exchange. The samples were characterized by scanning electron microscope(SEM), X-ray diffraction(XRD), N2 physical adsorption, NH3 temperature programmed desorption(NH3-TPD)and X ray fluorescence(XRF). The modified molecular sieves were applied to the production of 5-hydroxymethylfurfural(5-HMF)from fructose. The influence of different experimental variables, such as time, solvent and catalyst dosage were investigated. Results showed that amorphous particles aggregated on the surface of the modified samples, and the crystalline and acidity of the modified samples were reduced. In 30 mL dimethyl sulfoxide(DMSO)with 0.25 g Sn-SAPO-34 and 1 g fructose, the yield of 5-HMF was 47.7% and conversion rate of fructose was 99.5% after 1 h. The catalysts could be recycled and reused for five runs with little loss of catalytic activity, and could be resued with separation and calcination.

参考文献/References:

[1] HU L,LIN L,WU Z,et al.Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals[J].Renewable and Sustainable Energy Reviews,2017,74:230.
[2] QI X,WATANABE M,AIDA T M,et al.Synergistic conversion of glucose into 5-hydroxymethylfurfural in ionic liquid-water mixtures.[J].Bioresource Technology,2012,109:224.
[3] WANG P,YU H B,ZHAN S H,et al.Catalytic hydrolysis of lignocellulosic biomass into 5-hydroxymethylfurfural in ionic liquid[J].Bioresource Technology,2011,102(5):4179.
[4] LILGA M A,HALLEN R T,GRAY M.Production of oxidized derivatives of 5-hydroxymethylfurfural(HMF)[J].Topics in Catalysis,2010,53(15/16/17/18):1264.
[5] WANG F F,WU H Z,LIU C L,et al.Catalytic dehydration of fructose to 5-hydroxymethylfurfural over Nb2O5 catalyst in organic solvent[J].Carbohydrate Research,2013,368:78.
[6] JIMÉNEZ-MORALES I,SANTAMARÍA-GONZÁLEZ J,JIMÉNEZ- LÓPEZ A,et al.Glucose dehydration to 5-hydroxymethylfurfural on zirconium containing mesoporous MCM-41 silica catalysts[J].Fuel,2014,118:265.
[7] SU K M,LIU X,DING M,et al.Effective conversion sucrose into 5-hydroxymethylfurfural by tyrosine in [emim] Br[J].Journal of Molecular Catalysis A(Chemical),2013,379:350.
[8] CHIAPPE C,RODRIGUEZ-DOUTON M J,MEZZETTA A,et al.Recycle and extraction:cornerstones for an efficient conversion of cellulose into 5-hydroxymethylfurfural in ionic liquids[J].ACS Sustainable Chemistry & Engineering,2017,5(6):5529.
[9] SUN X N,WANG J,CHEN J J,et al.Dehydration of fructose to 5-hydroxymethylfurfural over MeSAPOs synthesized from bauxite[J].Microporous and Mesoporous Materials,2018,259:238.
[10] 努尔艾力·斯拉木,夏西木卡玛尔·买买提,古丽米热·吐尔地,等.固体酸Hf/PMO催化转化葡萄糖制取5-羟甲基糠醛[J].应用化工,2017,46(9):1660.
[11] GOMES F N D C,MENDES F M T,SOUZA M M V M.Synthesis of 5-hydroxymethylfurfural from fructose catalyzed by phosphotungstic acid[J].Catalysis Today,2017,279:296.
[12] NIKOLLA E,ROMÁN-LESHKOV Y,MOLINER M,et al.“One-pot” synthesis of 5-(hydroxymethyl)furfural from carbohydrates using tin-beta zeolite[J].ACS Catalysis,2011,1(4):408.
[13] SWIFT T D,NGUYEN H,ERDMAN Z,et al.Tandem Lewis acid/Brønsted acid-catalyzed conversion of carbohydrates to 5-hydroxymethylfurfural using zeolite beta[J].Journal of Catalysis,2016,333:149.
[14] LIU J X,LIU J,ZHAO Z,et al.Synthesis of a chabazite-supported copper catalyst with full mesopores for selective catalytic reduction of nitrogen oxides at low temperature[J].Chinese Journal of Catalysis,2016,37(5):750.
[15] YANG H,LIU X H,LU G Z,et al.Synthesis of SAPO-34 nanoplates via hydrothermal method[J].Microporous and Mesoporous Materials,2016,225:144.
[16] REN S,LIU G J,WU X,et al.Enhanced MTO performance over acid treated hierarchical SAPO-34[J].Chinese Journal of Catalysis,2017,38(1):123.

备注/Memo

备注/Memo:
收稿日期:2018-07-16
基金项目:国家科技支撑计划(2013BAE11B03)
作者简介:刘中海(1992—),男,E-mail:18865279438@163.com; 杨刚(联系人),教授,E-mail:yanggang@njtech.edu.cn.
引用格式:刘中海,高赛男,秦冬玲,等.改性分子筛催化果糖脱水制5-羟甲基糠醛[J].南京工业大学学报(自然科学版),2020,42(1):56-61.
LIU Zhonghai, GAO Sainan, QIN Dongling, et al. Modified molecular sieves for catalytic dehydration of fructose to 5-hydroxymethylfurfural[J].Journal of Nanjing Tech University(Natural Science Edition),2020,42(1):56-61..
更新日期/Last Update: 2020-01-30