|本期目录/Table of Contents|

 SONG Jian,LIU Yaoqian,YANG Guang,et al.Preparation and corrosion resistance of composite silane film on the surface of 304 stainless steel[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2020,42(01):67-73.[doi:10.3969/j.issn.1671-7627.2020.01.010]





Preparation and corrosion resistance of composite silane film on the surface of 304 stainless steel
南京工业大学 化工学院 材料化学工程国家重点实验室,江苏 南京 211800
SONG Jian LIU Yaoqian YANG GuangHAI ZhongZHOU JiadongWANG Changsong
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
复合硅烷膜 1H1H2H2H-全氟癸基三氯硅烷 12-双(三乙氧基硅基)乙烷 耐腐蚀性
composite silane film 1H1H2H2H-perfluorodecyltrichlorosilane 12-bis(trimethylsilyl)ethane corrosion resistance
本文利用1,2-双(三乙氧基硅基)乙烷(BTSE)和1H,1H,2H,2H-全氟癸基三氯硅烷(FDTS)两种硅烷自组装修饰304不锈钢表面,制备BTSE、FDTS硅烷膜和BTSE-FDTS复合硅烷膜。通过原子力显微镜(AFM)、X线能谱分析(EDS)和静态接触角(WCA)对样品进行表征。实验表明: 与单层BTSE和FDTS硅烷膜相比,BTSE-FDTS复合硅烷膜厚度更大(平均厚度为30 nm),F元素分布均匀且更致密,疏水性更强,静态接触角达到120°。极化曲线和加速腐蚀试验表明BTSE-FDTS复合硅烷膜的抗腐蚀性能优于单层硅烷膜和未修饰的不锈钢。与未修饰的不锈钢相比,复合硅烷膜的缓蚀效率达到84.2%,腐蚀损失率减少72.8%。
1H,1H,2H,2H-perfluorodecyltrichlorosilane(FDTS), 1,2-bis(trimethylsilyl)ethane(BTSE)and FDTS-BTSE composite films were prepared on 304 stainless steel surface. The samples was characterized by atomic force microscope(AFM), energy dispersive X-ray spectroscopy(EDS)and water contact angle(WCA). Results showed that the thickness average was 60 nm with the uniformity and compactness of F element distribution, and the hydrophobicity(WCA up to 120°)of the FDTS-BTSE composite silane film was higher and better than that of the only BTSE or FDTS. The polarization curves and accelerated corrosion tests proved that the corrosion resistances on the composite silane film surface were more apparent than these on the single film or the untreated 304 stainless steel. Comparing with these of the untreated 304 stainless steel, the corrosion inhibition efficiency of the composite silane film was increased by 84.2%, and the corrosion weight loss rate was reduced by 72.8%.


[1] ZHANG Y,YIN X,YAN Y,et al.Tribocorrosion behaviors of 304SS:effect of solution pH[J].RSC Advances,2015,5(23):17676.
[2] IBRAHIM M A M,REHIM S S A E,HAMZA M M.Corrosion behavior of some austenitic stainless steels in chloride environments[J].Materials Chemistry & Physics,2009,115(1):80.
[3] LI H,WANG X,WEI Q,et al.Photocathodic protection of 304 stainless steel by Bi2S3/TiO2 nanotube films under visible light[J].Nanoscale Research Letters,2017,12(1):80.
[4] SZUBERT K.Corrosion protection of stainless steel by triethoxyoctylsilane and tetraethoxysilane[J].International Journal of Electrochemical Science,2016,11(10):8256.
[5] SUBRAMANIAN V,OOIJ W J V.Silane based metal pretreatments as alternatives to chromating:shortlisted[J].Surface Engineering,2013,15(2):168.
[6] ANSARI F,NADERI R,DEHGHANIAN C.Improvement in the corrosion resistance of stainless steel 304L in sodium chloride solution by a nanoclay incorporated silane coating[J].RSC Advances,2015,5(1):706.
[7] ZHANG W,GUO H,SUN H,et al.Photogenerated cathodic protection and invalidation of silane/TiO2,hybrid coatings[J].Journal of Coatings Technology & Research,2017,14(2):417.
[8] CALABRESE L,BONACCORSI L,CAPRI A,et al.Assessment of hydrophobic and anticorrosion properties of composite silane-zeolite coatings on aluminum substrate[J].Journal of Coatings Technology & Research,2016,13(2):287.
[9] BALAN P,RAMAN R K S,CHAN E S,et al.Effectiveness of lanthanum triflate activated silica nanoparticles as fillers in silane films for corrosion protection of low carbon steel[J].Progress in Organic Coatings,2016,90:222.
[10] ZANDI ZAND R,FLEXER V,DE KEERSMAECKER M,et al.Self-healing silane coatings of cerium salt activated nanoparticles[J].Materials & Corrosion,2016,67(7):693.
[11] JOTHI K J,PALANIVELU K.Facile fabrication of core-shell Pr6O11-ZnO modified silane coatings for anti-corrosion applications[J].Applied Surface Science,2014,288(1):60.
[12] YASAKAU K A,KALLIP S,ZHELUDKEVICH M L,et al.Active corrosion protection of AA2024 by sol-gel coatings with cerium molybdate nanowires[J].Electrochimica Acta,2013,112(12):236.
[13] CAO Z,WANG H,QU J,et al.One step GO/DTES co-deposition on steels:electro-induced fabrication and characterization of thickness-controlled coatings[J].Chemical Engineering Journal,2017,320:588.
[14] TAN G,OUYANG K,WANG H,et al.Effect of amino-,methyl-and epoxy-silane coupling as a molecular bridge for formatting a biomimetic hydroxyapatite coating on titanium by electrochemical deposition[J].Journal of Materials Science & Technology,2016,32(9):956.
[15] HU J M,LIU L,ZHANG J Q,et al.Electrodeposition of silane films on aluminum alloys for corrosion protection[J].Progress in Organic Coatings,2007,58(4):265.
[16] QUIROGA-ARGANARAZ M P,RAMALLOLOPEZ J M,BENITEZ G,et al.Optimization of the surface properties of nanostructured Ni-W alloys on steel by a mixed silane layer[J].Physical Chemistry Chemical Physics,2015,17(21):14201.
[17] VUORI L,HANNULA M,LAHTONEN K,et al.Controlling the synergetic effects in(3-aminopropyl)trimethoxysilane and(3-mercaptopropyl)trimethoxysilane coadsorption on stainless steel surfaces[J].Applied Surface Science,2014,317:856.
[18] FAN H,LI S,ZHAO Z,et al.Inhibition of brass corrosion in sodium chloride solutions by self-assembled silane films[J].Corrosion Science,2011,53(12):4273.
[19] LING F Z,COSTER J D,LIN W Y,et al.Investigation of temporary stiction in poly-SiGe micromirror arrays[J].Sensors & Actuators A(Physical),2012,188(8):320.
[20] PAN Z,ZHANG W,KOWALSKI A,et al.Oleophobicity of biomimetic micropatterned surface and its effect on the adhesion of frozen oil[J].Langmuir the ACS Journal of Surfaces & Colloids,2015,31(36):9901.
[21] 周家栋,董依慧,张帅辉,等.高覆盖率氟代癸基三氯硅烷自组装单分子膜的制备[J].物理化学学报,2016,32(5):1221.
[22] FRANQUET A,BIESEMANS M,WILLEM R,et al.Multinuclear 1D-and 2D-NMR study of the hydrolysis and condensation of bis-1,2-(triethoxysilyl)ethane[J].Journal of Adhesion Science & Technology,2004,18(7):765.
[23] STOVER M,RENKE-GLUSZKO M,SCHRATZENSTALLER T,et al.Microstructuring of stainless steel implants by electrochemical etching[J].Journal of Materials Science,2006,41(17):5569.
[24] MCCFFERTY E.Validation of corrosion rates measured by the tafel extrapolation method[J].Corrosion Science,2005,47(12):3202.
[25] LE D P,YOO Y H,KIM J G,et al.Corrosion characteristics of polyaniline-coated 316L stainless steel in sulphuric acid containing fluoride[J].Corrosion Science,2009,51(2):330.
[26] LYU G C,XU C C,LYU Y M,et al.The enrichment of chloride anion in the occluded cell and its effect on stress corrosion crack of 304 stainless steel in low chloride concentration solution[J].Chinese Journal of Chemical Engineering,2008,16(4):646.
[27] GRAEVE I D,TOURWE E,BIESEMANS M,et al.Silane solution stability and film morphology of water-based bis-1,2-(triethoxysilyl)ethane for thin-film deposition on aluminium[J].Progress in Organic Coatings,2008,63(1):38.
[28] ARUKALAM I O,OGUZIE E E,LI Y.Fabrication of FDTS-modified PDMS-ZnO nanocomposite hydrophobic coating with anti-fouling capability for corrosion protection of Q235 steel[J].Journal of Colloid and Interface Science,2016,484:220.


基金项目:国家重点基础研究发展规划(973计划)(2013CB733503); 江苏高校优势学科建设工程(PAPD)
作者简介:宋健(1992—),男,E-mail:976561359@qq.com; 王昌松(联系人),副研究员,E-mail:wcs@njtech.edu.cn.
SONG Jian, LIU Yaoqian, YANG Guang, et al. Preparation and corrosion resistance of composite silane film on the surface of 304 stainless steel[J].Journal of Nanjing Tech University(Natural Science Edition),2020,42(1):67-73..
更新日期/Last Update: 2020-01-30