|本期目录/Table of Contents|

[1]吴晓娴,刘浩月,漆虹.以倍半硅氧烷为前驱体的管式有机-无机杂化SiO2纳滤膜的制备[J].南京工业大学学报(自然科学版),2020,42(01):94-100.[doi:10.3969/j.issn.1671-7627.2020.01.014]
 WU Xiaoxian,LIU Haoyue,QI Hong.Fabrication of tubular organic-inorganic hybrid SiO2 nanofiltration membrane derived from silsesquioxane[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2020,42(01):94-100.[doi:10.3969/j.issn.1671-7627.2020.01.014]
点击复制

以倍半硅氧烷为前驱体的管式有机-无机杂化SiO2纳滤膜的制备()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
42
期数:
2020年01期
页码:
94-100
栏目:
出版日期:
2020-01-13

文章信息/Info

Title:
Fabrication of tubular organic-inorganic hybrid SiO2 nanofiltration membrane derived from silsesquioxane
文章编号:
1671-7627(2020)01-0094-07
作者:
吴晓娴刘浩月漆虹
南京工业大学 化工学院 材料化学工程国家重点实验室,江苏 南京 211800
Author(s):
WU Xiaoxian LIU Haoyue QI Hong
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
关键词:
纳滤膜 BTESE 复合材料 荷电性 镁锂分离
Keywords:
nanofiltration membrane BTESE composite material charge Mg2+/Li+separation
分类号:
TQ174.1
DOI:
10.3969/j.issn.1671-7627.2020.01.014
文献标志码:
A
摘要:
以双(三乙氧基硅基)甲烷(BTESM)、1,2-双(三乙氧基硅基)乙烷(BTESE)和1,8-双(三乙氧基硅基)辛烷(BTESO)为前驱体,制备BTESM、BTESE和BTESO粉体,通过热分析仪(TG)、N2吸附-脱附比表面分析仪、傅里叶变换红外光谱仪(FT-IR)和纳米粒度分析仪对粉体的热稳定性、结构和荷电性能进行表征。以BTESE粉末为前驱体,Al2O3管式膜为支撑体,采用溶胶-凝胶法制备有机-无机杂化SiO2膜,考察有机-无机杂化SiO2膜对不同无机盐溶液的分离性能。结果表明:BTESE粉末的热稳定性最好,在400 ℃时质量损失率仅为16.1%; 粉体的孔径集中分布于0.6~0.65 nm; BTESE粉体呈负电性,在一价和二价阳离子溶液中,Zeta电位值之差为17.6 mV,呈现明显的荷电特性; BTESE更适合用作盐湖中镁锂分离的膜材料,BTESE杂化膜对浓度为0.002 mol/L的5种无机盐的截留率顺序为R(Na2SO4)>R(LiCl)>R(NaCl)>R(MgCl2)>R(CaCl2); BTESE杂化膜对LiCl溶液的截留率为68.9%,对MgCl2溶液的截留率为23.9%。
Abstract:
Organic-inorganic hybrid SiO2 powders were fabricated using bis(triethoxysilyl)methane(BTESM), 1,2-bis(triethoxysilyl)ethane(BTESE)and 1,8-bis(triethoxysilyl)octane(BTESO)as precursors. BTESM, BTESE and BTESO powders were characterized by thermogravimetry(TG), N2 adsorption-desorption, Fourier infrared spectrometer(FT-IR), and Zeta analyzer. BTESE was selected due to its better thermal stability, microporous structure and surface charge for nanofiltration separation. The BTESE sol prepared by sol-gel method was coated on the tubular Al2O3 support to fabricate organic-inorganic hybrid SiO2 membrane. The separation performance of hybrid membrane for monovalent and divalent ions was investigated. Results showed that thermal stability of BTESE powders was better than that of BTESM and BTESO powders. The weight loss of BTESE powders was 16.1% at 400 ℃. The pore size distribution of BTESE powders was in a range of 0.6 to 0.65 nm. The BTESE powders were negatively charged. The BTESE powders had obviously different Zeta potential values when they were dispersed in monovalent and divalent cation solutions which showed that BTESE powders had a significant charge phenomenon. In five kinds of salt solutions with the concentration of 0.002 mol/L, the order of rejection rate(R)of the BTESE hybrid membrane was R(Na2SO4)>R(LiCl)>R(NaCl)>R(MgCl2)>R(CaCl2). The rejection of LiCl solutions by the membrane was 68.9%, while the rejection of MgCl2 solutions was 23.9%.

参考文献/References:

[1] 马培华,张彭熹.中国盐湖锂资源的可持续开发[J].中国科学院院刊,1999(3):210.
[2] 胡青峰.锂辉石在日用陶瓷工业中的应用展望[J].中国陶瓷,1994(3):52.
[3] 田英良,郭现龙,孙诗兵,等.锂辉石在低硼硅医药玻璃中的应用研究[J].玻璃与搪瓷,2012,40(5):11.
[4] 李法强.世界锂资源提取技术述评与碳酸锂产业现状及发展趋势[J].世界有色金属,2015(5):19.
[5] 冉敬文,刘鑫,裴军,等.我国锂资源开发的生产工艺现状[J].广州化工,2016,44(13):5.
[6] 时东,李丽娟,宋富根,等.N523-TBP混合萃取体系从盐湖卤水中萃取锂的机理研究[J].盐湖研究,2017(1):57.
[7] 赵晓昱.海卤水提锂新技术研究现状及展望[J].高校化学工程学报,2017,31(3):498.
[8] 张秀峰,谭秀民,张利珍.纳滤膜分离技术应用于盐湖卤水提锂的研究进展[J].无机盐工业,2017,49(1):3.
[9] SOMRANI A,HAMZAOUI A H,PONTIE M.Study on lithium separation from salt lake brines by nanofiltration(NF)and low pressure reverse osmosis(LPRO)[J].Desalination,2013,317(7):185.
[10] 康为清,时历杰,赵有璟,等.纳滤法用于盐湖卤水镁锂分离的初步实验[J].无机盐工业,2014,46(12):22.
[11] 计超,张杰,张志君.DK纳滤膜对高镁锂比卤水的分离性能研究[J].膜科学与技术,2014,34(3):79.
[12] 时历杰,张大义,王敏,等.用于从高镁锂比的盐湖卤水分离锂的盐湖卤水处理方法:103074502 A[P].2013-05-01.
[13] ELMA M,YACOU C,WANG D,et al.Microporous silica based membranes for desalination[J].Water,2012,4(3):630.
[14] 徐南平,邢卫红,赵宜江.无机膜分离技术与应用[M].北京:化学工业出版社,2003:144.
[15] HARYADI J W.Structural and transport properties of hybrid organic inorganic silica membranes[J].Iptek the Journal for Technology & Science,2007,doi:10.12962/j20882033.v18i2.171.
[16] CASTRICUM H L,PARADIS G G,MITTELMEIJER-HAZELEGER M C,et al.Tailoring the separation behavior of hybrid organosilica membranes by adjusting the structure of the organic bridging group[J].Advanced Functional Materials,2011,21(12):2318.
[17] WANG J,KANEZASHI M,YOSHIOKA T,et al.Effect of calcination temperature on the PV dehydration performance of alcohol aqueous solutions through BTESE-derived silica membranes[J].Journal of Membrane Science,2012,415-416:812.
[18] 宋双双,宋华庭,王晨颖,等.以烷基桥联倍半硅氧烷为前驱体制备有机无机杂化SiO2气体分离膜[J].硅酸盐学报,2016,44(12):1761.
[19] XU R,WANG J,KANEZASHI M,et al.Development of robust organosilica membranes for reverse osmosis[J].Langmuir,2011,27(23):13996.
[20] BARDOT C,GAUBERT E,YAROSHCHUK A E.Unusual mutual influence of electrolytes during pressure-driven transport of their mixtures across charged porous membranes[J].Journal of Membrane Science,1995,103(1/2):11.
[21] NIIMI T,NAGASAWA H,KANEZASHI M,et al.Preparation of BTESE-derived organosilica membranes for catalytic membrane reactors of methylcyclohexane dehydrogenation[J].Journal of Membrane Science,2014,455(4):378.
[22] 黄瑞强,苏仪,万印华,等.含季铵荷电基团的有机-无机杂化介孔材料的合成与表征[J].化工新型材料,2010,38(增刊1):52.
[23] SONG H T,WEI Y B,WANG C Y,et al.Tuning sol size to optimize organosilica membranes for gas separation[J].Chinese Journal of Chemical Engineering,2018,26:56.
[24] LEI J J,SONG H T,WEI Y B,et al.A novel strategy to enhance hydrothermal stability of Pd-doped organosilica membrane for hydrogen separation[J].Microporous & Mesoporous Materials,2017,253:57.
[25] TSURU T,IGI R,KANEZASHI M,et al.Permeation properties of hydrogen and water vapor through porous silica membranes at high temperatures[J].Aiche Journal,2011,57(3):623.
[26] 苏保卫,段晓杰,高学理,等.荷电纳滤膜的切向流动电位测试技术研究[J].膜科学与技术,2010,30(4):21.
[27] VOLKOV A G,PAULA S,DEAMER D W.Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers[J].Bioelectrochemistry & Bioenergetics,1997,42(2):156.
[28] LI X H,ZHANG C J,ZHANG S N,et al.Preparation and characterization of positively charged polyamide composite nanofiltration hollow fiber membrane for lithium and magnesium separation[J].Desalination,2015,369:34.
[29] KRIEG H M,MODISE S J,KEIZER K,et al.Salt rejection in nanofiltration for single and binary salt mixtures in view of sulphate removal[J].Desalination,2005,171(2):211.
[30] 杨振生,张磊,张广厚,等.界面聚合法PI/PP耐溶剂复合纳滤膜的制备与表征[J].化工学报,2012,63(8):2639.

相似文献/References:

[1]戚茂飞,武海洋,刘文强,等.CaCl2对葡萄糖纳滤截留率的影响[J].南京工业大学学报(自然科学版),2011,33(04):103.[doi:10.3969/j.issn.1671-7627.2011.04.023]
 QI Maofei,WU Haiyang,LIU Wenqiang,et al.Effects of CaCl2 on retention of glucose by nanofiltration[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2011,33(01):103.[doi:10.3969/j.issn.1671-7627.2011.04.023]

备注/Memo

备注/Memo:
收稿日期:2018-06-01
基金项目:国家自然科学基金(21490581); 中国石油化工股份有限公司基金(317008-6); 广西创新驱动发展专项基金(桂科AA17204092)
作者简介:吴晓娴(1993—),女,E-mail:1272211810@qq.com; 漆虹(联系人),研究员,E-mail:hqi@njtech.edu.cn.
引用格式:吴晓娴,刘浩月,漆虹.以倍半硅氧烷为前驱体的管式有机-无机杂化SiO2纳滤膜的制备[J].南京工业大学学报(自然科学版),2020,42(1):94-100.
WU Xiaoxian, LIU Haoyue, QI Hong. Fabrication of tubular organic-inorganic hybrid SiO2 nanofiltration membrane derived from silsesquioxane[J].Journal of Nanjing Tech University(Natural Science Edition),2020,42(1):94-100..
更新日期/Last Update: 2020-01-30