|本期目录/Table of Contents|

[1]江佳佳,李莉,章立帆,等.基于本质安全的半间歇式等温强放热反应加料速度优化[J].南京工业大学学报(自然科学版),2019,41(05):543-548.[doi:10.3969/j.issn.1671-7627.2019.05.002]
 JIANG Jiajia,LI Li,ZHANG Lifan,et al.Feed rate optimization for semi-batch isothermal highly exothermic reaction based on intrinsic safety[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2019,41(05):543-548.[doi:10.3969/j.issn.1671-7627.2019.05.002]
点击复制

基于本质安全的半间歇式等温强放热反应加料速度优化()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
41
期数:
2019年05期
页码:
543-548
栏目:
出版日期:
2019-10-22

文章信息/Info

Title:
Feed rate optimization for semi-batch isothermal highly exothermic reaction based on intrinsic safety
文章编号:
1671-7627(2019)05-0543-06
作者:
江佳佳李莉章立帆马腾坤蒋军成
南京工业大学 安全科学与工程学院 江苏省危险化学品本质安全与控制技术重点实验室,江苏 南京 211800
Author(s):
JIANG Jiajia LI Li ZHANG Lifan MA Tengkun JIANG Juncheng
Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, College of Safety Science and Engineering, Nanjing Tech University, Nanjing 211800, China
关键词:
半间歇式反应器 粒子群优化 加料速度优化
Keywords:
semi-batch reactor particle swarm optimization feed rate optimization
分类号:
TQ03;X937
DOI:
10.3969/j.issn.1671-7627.2019.05.002
文献标志码:
A
摘要:
针对半间歇式等温强放热反应,加料速度是控制放热速率的有效控制方法之一。本文综合考虑反应过程安全性及经济性,建立半间歇式等温过程加料速度优化数学模型。为避免强放热反应的热失控,基于本质安全思想,考虑最危险情况——冷却失效情形引发的反应热失控作为实现过程安全的约束条件,并采用罚函数法将约束优化模型转化为无约束优化模型。采用粒子群算法(PSO)对优化问题求解,并将模拟退火(SA)引入粒子群算法增强全局寻优能力。优化计算结果表明:相比于采用恒定加料速度方式,基于混合粒子群算法(SA-PSO)优化算法的分段线性加料方式不仅可以实现过程本质安全化,还可以大大提高转化率。
Abstract:
Feed rate is one of the most effective ways to control heat release rate for an isothermal semi-batch highly exothermic process. A constraint optimization model for semi-batch isothermal feed rate was proposed based on the comprehensive consideration of process safety and economy. The safety constraint was formulated to prevent a highly exothermic reaction from thermal runaway even in the case of cooling failure. The constraint optimization model was converted to unconstraint one using a penalty function. Hybrid of simulated annealing algorithm and particle swarm algorithm(SA-PSO)was used to solve the problem by integrating simulated annealing algorithm(SA)with particle swarm algorithm(PSO)to improve the global optimization capability. The optimization results showed that optimal nonlinear feed rate profiles based on PSO not only realized inherent safety, but also yielded a much higher level of conversion compared with constant feed rate.

参考文献/References:

[1] JOSEPH G,KASZNIAK M,LONG L.Lessons after Bhopal:CSB a catalyst for change[J].Journal of Loss Prevention in the Process Industries,2005,18(4/5/6):537.
[2] STOESSEL F.Thermal safety of chemical processes:risk assessment and process design[M].[S.l.]:John Wiley & Sons,2008.
[3] GYGAX R.Chemical reaction engineering for safety[J].Chemical Engineering Science,1988,43(8):1759.
[4] UBRICH O,SRINIVASAN B,LERENA P,et al.Optimal feed profile for a second order reaction in a semi-batch reactor under safety constraints[J].Journal of Loss Prevention in the Process Industries,1999,12(6):485.
[5] UBRICH O,SRINIVASAN B,STOESSEL F,et al.Optimization of a semi-batch reaction system under safety constraints[C]//1999 European Control Conference(ECC).New York:IEEE,1999:850.
[6] KUMMER A,VARGA T.Feeding trajectory optimization in fed-batch reactor with highly exothermic reactions[J].Computers & Chemical Engineering,2017,98:1.
[7] KENNEDY J,EBERHART R.Particle swarm optimization[C]//Proceedings of ICNN’95-International Conference on Neural Networks.New York:IEEE,1995.
[8] 王凌,刘波.微粒群优化与调度算法[M].北京:清华大学出版社,2008.
[9] HERRERA F,ZHANG J.Optimal control of batch processes using particle swam optimisation with stacked neural network models[J].Computers & Chemical Engineering,2009,33(10):1593.
[10] 莫愿斌,陈德钊,胡上序.混沌粒子群算法及其在生化过程动态优化中的应用[J].化工学报,2006,57(9):2123.
[11] XUE Y,WANG J,YU T,et al.Parameter estimation of fermentation process model based on an improved PSO algorithm[J].Chinese Journal of Scientific Instrument,2010,31(1):178.
[12] 黄炯,艾剑良,万婧.基于模拟退火粒子群算法的飞机气动参数辨识[J].复旦学报(自然科学版),2016,55(3):336.
[13] 韩睿松,杨维.基于改进粒子群优化的井下WMSN覆盖增强算法[J].中国矿业大学学报,2016,45(1):170.
[14] KÜHL P,DIEHL M,MILEWSKA A,et al.Robust NMPC for a benchmark fed-batch reactor with runaway conditions[M]//Assessment and Future Directions of Nonlinear Model Predictive Control.Berlin,Heidelberg:Springer Berlin Heidelberg,2007:455.

备注/Memo

备注/Memo:
收稿日期:2019-07-03
基金项目:国家自然科学基金(51804167,21436006)
作者简介:江佳佳(1985— ),男,副教授,E-mail:jiajiajiang@njtech.edu.cn.
引用本文:江佳佳,李莉,章立帆,等.基于本质安全的半间歇式等温强放热反应加料速度优化[J].南京工业大学学报(自然科学版),2019,41(5):543-548..
更新日期/Last Update: 2019-09-30