|本期目录/Table of Contents|

[1]褚骏,陈献,崔咪芬,等.吡蚜酮副产废盐中污染物的鉴别及热解析工艺[J].南京工业大学学报(自然科学版),2019,41(05):625-631.[doi:10.3969/j.issn.1671-7627.2019.05.013]
 CHU Jun,CHEN Xian,CUI Mifen,et al.Identification and thermal desorption technology of contaminant in waste salt of piridoxone by-production[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2019,41(05):625-631.[doi:10.3969/j.issn.1671-7627.2019.05.013]
点击复制

吡蚜酮副产废盐中污染物的鉴别及热解析工艺()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
41
期数:
2019年05期
页码:
625-631
栏目:
出版日期:
2019-10-22

文章信息/Info

Title:
Identification and thermal desorption technology of contaminant in waste salt of piridoxone by-production
文章编号:
1671-7627(2019)05-0625-07
作者:
褚骏1陈献1崔咪芬1刘清1费兆阳2汤吉海12张竹修1乔旭12
1.南京工业大学 化工学院,江苏 南京 211800; 2.南京工业大学 材料化学工程国家重点实验室, 江苏 南京 211800
Author(s):
CHU Jun1CHEN Xian1CUI Mifen1LIU Qing1FEI Zhaoyang2TANG Jihai12ZHANG Zhuxiu1QIAO Xu12
1.College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China; 2.State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
关键词:
吡蚜酮 NaCl废盐 污染物鉴别 热解析 重结晶
Keywords:
piridoxone sodium chloride waste salt contaminant identification thermal desorption recrystallization
分类号:
TQ156.98
DOI:
10.3969/j.issn.1671-7627.2019.05.013
文献标志码:
A
摘要:
针对吡蚜酮副产废盐中含有的污染物,采用气相色谱-质谱仪(GC-MS)、X线荧光光谱仪和傅里叶变换红外光谱仪(FT-IR)对废盐中的主要污染物成分进行鉴别。鉴别结果显示:废盐中除NaCl外,存在的主要污染物为NH4Cl、CH3COONH4和3-吡啶甲醛,质量分数分别约为10.41%、3.11%和5.22%。废盐的热解析研究结果表明:在空气中进行热解析,当温度达到500 ℃后,废盐中的N元素质量分数可接近为0,表明污染物已经从废盐中几乎完全去除。在废盐质量为5 g、空气流量为50 mL/min、升温速率为10 ℃/min、温度为500 ℃的条件下,热解析30 min并重结晶后,可得到质量分数约为99.88%的白色NaCl。
Abstract:
The contaminants in the waste salt from piridoxone production were identified by gas chromatography-mass spectrometry(GC-MS), X-ray fluorescence spectrometry and Fourier transform infrared spectrometer(FT-IR). Identification results showed that the main contaminants in waste salt in addition to NaCl, were ammonium chloride, ammonium acetate and 3-pyridine formaldehyde with contents of about 10.41%, 3.11% and 5.22%, respectively. The results of the waste salt thermal desorption process showed that the contents of nitrogen element in the waste salt could be close to 0 at 500 ℃ in the air, which indicated that the pollutants had been eliminated from the waste salt by thermal desorption. A content of about 99.88% of NaCl could be obtained after recrystallization and thermal desorption under the conditions of weight of waste salt of 5 g, the air flow rate of 50 mL/min, thermal desorption temperature of 500 ℃, heating rate of 10 ℃/min, and thermal desorption time of 30 min.

参考文献/References:

[1] XU W M,ZHANG M,WEI K,et al.Development and evaluation of pymetrozine controlled-release formulation to control paddy planthopper[J].RSC Advances,2018,8(40):22687.
[2] ZHANG Y F,ZHANG L,XU P,et al.Dissipation and residue of pymetrozine in rice field ecosystem[J].Environmental Monitoring and Assessment,2015,187(3):78.
[3] 吴绪金,马婧玮,刘丹黎,等.吡蚜酮在棉叶和土壤中消解动态分析及棉子中残留量膳食摄入评估[J].农药,2017,56(7):506.
[4] JIA G F,ZENG L R,ZHAO S,et al.Monitoring residue levels and dietary risk assessment of pymetrozine for Chinese consumption of cauliflower[J].Biomedical Chromatography,2018,36(1):e4455.
[5] GONG J,ZHENG K M,YANG G Q,et al.Determination,residue analysis,risk assessment and processing factor of pymetrozine and its metabolites in Chinese kale under field conditions[J].Food Additives & Contaminants:(Part A),2019,36(1):141.
[6] 王一军.500 吨/年吡蚜酮工业化生产工艺研究[J].精细化工原料及中间体,2012(4):35.
[7] WANG B Z,KE S Y,KISHORE B,et al.A facile synthesis of pyrimidone derivatives and single-crystal characterization of pymetrozine[J].Synthetic Communications,2012,42(16):2327.
[8] 孙瑞,于鲁汕,傅忠君,等.工业固体危险废弃物处置技术[J].现代化工,2013,33(12):11.
[9] BLANEY B L.Treatment technologies for hazardous wastes:alternative techniques for managing solvent wastes[J].Journal of the Air Pollution Control Association,1986,36(3):275.
[10] BIE J,MORZYK B,WYSTALSKA K,et al.The treatment of incineration wastes with a carbonate waste fraction from the zinc-lead industry[J].Archives of Environmental Protection,2014,40(1):61.
[11] 胡卫平,贺周初,朱文新,等.农药副产废盐渣的无害化处理及利用[J].精细化工中间体,2013,43(3):48.
[12] YAO Z T,LI J H,ZHAO X Y.Molten salt oxidation:a versatile and promising technology for the destruction of organic-containing wastes[J].Chemosphere,2011,84(9):1167.
[13] 王利超,王志良,马堂文,等.模拟氯化钠盐渣的高温处理[J].化工环保,2014,34(5):419.
[14] 李凤娟,宿辉,李小龙,等.高级氧化技术在难降解工业废水处理中的应用研究进展[J].环保科技,2017,23(2):55.
[15] 吴菊珍,熊平,景江,等.铁炭微电解-高级氧化-厌氧-好氧处理难降解农药废水的研究[J].安徽农业科学,2015,43(18):147.
[16] 高豪杰,朱跃钊,马婷婷,等.褐煤直接热解特性及动力学行为的热分析研究[J].南京工业大学学报(自然科学版),2014,36(3):17.
[17] WU D,TIAN Y,WEN X W,et al.Studies on the use of microwave for enhanced properties of glass-ceramics produced from sewage sludge pyrolysis residues(SSPR)[J].Journal of the Taiwan Institute of Chemical Engineers,2015,48:81.
[18] GARLAND C W,SCHUMAKER N E.Effect of ordering on the infra-red spectrum of ammonium chloride[J].Journal of Physics and Chemistry of Solids,1967,28(5):799.
[19] 张宁,王朝敏,卢保平,等.氯化铵热分解过程的机理判别和动力学研究[J].河南师范大学学报(自然科学版),1995,23(2):45.

备注/Memo

备注/Memo:
收稿日期:2019-04-28
基金项目:国家重点研发计划(2017YFC0210903, 2017YFB0307304); 国家自然科学基金(21606130, 21306089); 材料化学工程国家重点实验室开放课题(ZK201610); 江苏高校优势学科建设工程; 2016年度江苏省第5期“333工程”
作者简介:褚骏(1993—),男,E-mail:935382151@qq.com; 陈献(联系人),副研究员,E-mail:chenxian@njtech.edu.cn; 崔咪芬(联系人),教授,E-mail:mfcui@njtech.edu.cn.
引用本文:褚骏,陈献,崔咪芬,等.吡蚜酮副产废盐中污染物的鉴别及热解析工艺[J].南京工业大学学报(自然科学版),2019,41(5):625-631..
更新日期/Last Update: 2019-09-30