|本期目录/Table of Contents|

[1]崔志芹,祝忠林,黄德春,等.葡萄糖氧化酶纳米药物介导癌症联合治疗的应用进展[J].南京工业大学学报(自然科学版),2020,42(02):135-141.[doi:10.3969/j.issn.1671-7627.2020.02.001]
 CUI Zhiqin,ZHU Zhonglin,HUANG Dechun,et al.Advances in the application of glucose oxidase nanodrugs mediated combinational cancer therapy[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2020,42(02):135-141.[doi:10.3969/j.issn.1671-7627.2020.02.001]
点击复制

葡萄糖氧化酶纳米药物介导癌症联合治疗的应用进展()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
42
期数:
2020年02期
页码:
135-141
栏目:
出版日期:
2020-03-22

文章信息/Info

Title:
Advances in the application of glucose oxidase nanodrugs mediated combinational cancer therapy
文章编号:
1671-7627(2020)02-0135-07
作者:
崔志芹祝忠林黄德春钱红亮于颖陈维
中国药科大学 制药工程系,江苏 南京 211198
Author(s):
CUI Zhiqin ZHU Zhonglin HUANG Dechun QIAN Hongliang YU Ying CHEN Wei
Department of Pharmaceutical Engineering, China Pharmaceutical University,Nanjing 211198,China
关键词:
葡萄糖氧化酶 纳米药物 饥饿治疗 癌症联合治疗
Keywords:
glucose oxidase nanodrug starving treatment combinational cancer therapy
分类号:
R730.5
DOI:
10.3969/j.issn.1671-7627.2020.02.001
文献标志码:
A
摘要:
纳米药物在癌症疾病的诊断和治疗中展示了重要的作用。葡萄糖氧化酶(GOD)纳米药物催化消耗葡萄糖,同时消耗O2,产生葡萄糖酸和H2O2,阻碍肿瘤的营养供应,降低肿瘤微环境的O2含量和酸度,增强氧化应激等效果。GOD纳米药物联合其他治疗手段可实现对癌症的协同治疗。本文介绍了近年来国内外关于GOD纳米药物联合化药、Fenton试剂和光敏剂等活性分子在协同治疗癌症中的应用所取得的进展,有望提供更优、安全、高效的抗肿瘤策略。
Abstract:
Nanomedicines play highly important roles in the diagnosis and treatment of cancer diseases. Glucose oxidase(GOD)nanodrugs catalyze the consumption of glucose with the cost of oxygen, and produce gluconic acid and hydrogen peroxide, by which they hinder the nutritional supplement for tumors, reduce the oxygen content and decrease the acidity of tumor microenvironment to enhance oxidative stress. GOD nanodrugs are widely used by combining with other treatments to realize the synergistic cancer treatment. This paper briefly reviewed the recent progress on the application of GOD nanodrugs combined with active molecules such as chemotherapeutics, Fenton reagents and photosensitizers for combinational cancer therapy, to provide a more safe and efficient anti-tumor strategy in the future.

参考文献/References:

[1] MURA S,NICOLAS J,COUVREUR P.Stimuli-responsive nanocarriers for drug delivery[J].Nature Materials,2013,12(11):991.
[2] 刘婧,胡豆豆,周泉,等.抗肿瘤纳米药物的设计与挑战[J].中国科学(化学),2019,49(9):1192.
[3] 邓超,孟凤华,程茹,等.多功能生物可降解聚合物纳米药物载体:设计合成及在肿瘤靶向治疗上的应用[J].科学通报,2015,60(15):1339.
[4] CHEN W,MENG F H,CHENG R,et al.Advanced drug and gene delivery systems based on functional biodegradable polycarbonates and copolymers[J].Journal of Controlled Release,2014,190:398.
[5] QIN S Y,CHENG Y J,LEI Q,et al.Combinational strategy for high-performance cancer chemotherapy[J].Biomaterials,2018,171:178.
[6] WONG C M,WONG K H,CHEN X D.Glucose oxidase:natural occurrence,function,properties and industrial applications[J].Applied Microbiology and Biotechnology,2008,78(6):927.
[7] WILSON R,TURNER A P F.Glucose oxidase:an ideal enzyme[J].Biosensors and Bioelectronics,1992,7(3):165.
[8] 王晶,朱伟,徐祖顺.肿瘤 “饥饿” 疗法的研究进展[J].生命科学,2018,30(6):637.
[9] KOPPENOL W H,BOUNDS P L,DANG C V.Otto Warburg’s contributions to current concepts of cancer metabolism[J].Nature Reviews Cancer,2011,11(5):325.
[10] VANDER-HEIDEN M G,CANTLEY L C,THOMPSON C B.Understanding the Warburg effect:the metabolic requirements of cell proliferation[J].Science,2009,324:1029.
[11] LIU H P,KURTOGLU M,LEÓN-ANNICCHIARICO C L,et al.Combining 2-deoxy-D-glucose with fenofibrate leads to tumor cell death mediated by simultaneous induction of energy and ER stress[J].Oncotarget,2016,7(24):36461.
[12] ZHANG C,NI D L,LIU Y Y,et al.Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy[J].Nature Nanotechnology,2017,12(4):378.
[13] ZHAO W G,HU J,GAO W P.Glucose oxidase-polymer nanogels for synergistic cancer-starving and oxidation therapy[J].ACS Applied Materials & Interfaces,2017,9(28):23528.
[14] GAO S S,LIN H,ZHANG H X,et al.Nanocatalytic tumor therapy by biomimetic dual inorganic nanozyme-catalyzed cascade reaction[J].Advanced Science,2019,6(3):1801733.
[15] FU L H,QI C,HU Y R,et al.Glucose oxidase-instructed multimodal synergistic cancer therapy[J].Advanced Materials,2019,31(21):1808325.
[16] LUO Z Y,ZHENG M B,ZHAO P F,et al.Self-monitoring artificial red cells with sufficient oxygen supply for enhanced photodynamic therapy[J].Scientific Reports,2016,6:23393.
[17] ZHANG M K,LI C X,WANG S B,et al.Tumor starvation induced spatiotemporal control over chemotherapy for synergistic therapy[J].Small,2018,14(50):1803602.
[18] YANG Z F,POON R T P,LIU Y Q,et al.High doses of tyrosine kinase inhibitor PTK787 enhance the efficacy of ischemic hypoxia for the treatment of hepatocellular carcinoma:dual effects on cancer cell and angiogenesis[J].Molecular Cancer Therapeutics,2006,5(9):2261.
[19] SIMIZU S,TAKADA M,UMEZAWA K,et al.Requirement of caspase-3(-like)protease-mediated hydrogen peroxide production for apoptosis induced by various anticancer drugs[J].Journal of Biological Chemistry,1998,273(41):26900.
[20] CHANG K W,LIU Z H,FANG X F,et al.Enhanced phototherapy by nanoparticle-enzyme via generation and photolysis of hydrogen peroxide[J].Nano Letters,2017,17(7):4323.
[21] IMLAY J,CHIN S,LINN S.Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro[J].Science,1988,240:640.
[22] 郑明彬,赵鹏飞,罗震宇,等.纳米技术在癌症诊疗一体化中的应用[J].科学通报,2014,59(31):3009.
[23] DENNY W A.Hypoxia-activated prodrugs in cancer therapy:progress to the clinic[J].Future Oncology,2010,6(3):419.
[24] ZHANG L,WANG Z Z,ZHANG Y,et al.Erythrocyte membrane cloaked metal-organic framework nanoparticle as biomimetic nanoreactor for starvation-activated colon cancer therapy[J].ACS Nano,2018,12(10):10201.
[25] ZHANG R,FENG L Z,DONG Z L,et al.Glucose & oxygen exhausting liposomes for combined cancer starvation and hypoxia-activated therapy[J].Biomaterials,2018,162:123.
[26] YANG Y N,LU Y,ABBARAJU P L,et al.Stepwise degradable nanocarriers enabled cascade delivery for synergistic cancer therapy[J].Advanced Functional Materials,2018,28(28):1800706.
[27] LI J J,LI Y F,WANG Y H,et al.Polymer prodrug-based nanoreactors activated by tumor acidity for orchestrated oxidation/chemotherapy[J].Nano Letters,2017,17(11):6983.
[28] CHENG H,JIANG X Y,ZHENG R R,et al.A biomimetic cascade nanoreactor for tumor targeted starvation therapy-amplified chemotherapy[J].Biomaterials,2019,195(1):75.
[29] LIN L S,SONG J B,SONG L,et al.Simultaneous fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy [J].Angewandte Chemie International Edition,2018,57(18):4902.
[30] ZHANG C,BU W B,NI D L,et al.Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction[J].Angewandte Chemie International Edition,2016,55(6):2101.
[31] MA P G,XIAO H H,YU C,et al.Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species[J].Nano Letters,2017,17(2):928.
[32] FENG L L,XIE R,WANG C Q,et al.Magnetic targeting,tumor microenvironment-responsive intelligent nanocatalysts for enhanced tumor ablation[J].ACS Nano,2018,12(11):11000.
[33] KE W D,LI J J,MOHAMMED F,et al.Therapeutic polymersome nanoreactors with tumor-specific activable cascade reactions for cooperative cancer therapy[J].ACS Nano,2019:13(2):2357.
[34] TANG Z M,LIU Y Y,HE M Y,et al.Chemodynamic therapy:tumour microenvironment-mediated Fenton and Fenton-like reactions[J].Angewandte Chemie International Edition,2019,58(4):946.
[35] YAO Y J,CAI Y M,WU G D,et al.Sulfate radicals induced from peroxymonosulfate by cobalt manganese oxides(CoxMn3-xO4)for Fenton-like reaction in water[J].Journal of Hazardous Materials,2015,296:128.
[36] WANG Q,TIAN S L,NING P.Degradation mechanism of methylene blue in a heterogeneous Fenton-like reaction catalyzed by ferrocene[J].Industrial & Engineering Chemistry Research,2014,53(2):643.
[37] PARK S C,KIM N H,YANG W,et al.Polymeric micellar nanoplatforms for Fenton reaction as a new class of antibacterial agents[J].Journal of Controlled Release,2016,221:37.
[38] ZHANG L,WAN S S,LI C X,et al.An adenosine triphosphate-responsive autocatalytic Fenton nanoparticle for tumor ablation with self-supplied H2O2 and acceleration of Fe(Ⅲ)/Fe(Ⅱ)conversion[J].Nano Letters,2018,18(12):7609.
[39] GARG T,JAIN N K,RATH G,et al.Nanotechnology-based photodynamic therapy:concepts,advances,and perspectives[J].Critical Reviews in Therapeutic Drug Carrier Systems,2015,32(5):389.
[40] 李亚楠,王怡乔,潘铁成,等.肿瘤光动力疗法:理论基础及治疗策略[J].中国激光医学杂志,2014(2):98.
[41] LI S Y,CHENG H,XIE B R,et al.Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy[J].ACS Nano,2017,11(7):7006.
[42] ZHOU Z J,SONG J B,NIE L M,et al.Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy[J].Chemical Society Reviews,2016,45(23):6597.
[43] YU Z Z,ZHOU P,PAN W,et al.A biomimetic nanoreactor for synergistic chemiexcited photodynamic therapy and starvation therapy against tumor metastasis[J].Nature Communications,2018,9(1):5044.
[44] CHEN G Y,ROY I,YANG C H,et al.Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy[J].Chemical Reviews,2016,116(5):2826.
[45] FENG W,HAN X G,WANG R Y,et al.Nanocatalysts-augmented and photothermal-enhanced tumor-specific sequential nanocatalytic therapy in both NIR-I and NIR-II biowindows[J].Advanced Materials,2018,31(5):1805919.
[46] ZHOU J,LI M H,HOU Y H,et al.Engineering of a nanosized biocatalyst for combined tumor starvation and low-temperature photothermal therapy[J].ACS Nano,2018,12(3):2858.
[47] HE Q J,KIESEWETTER D O,QU Y,et al.NIR-responsive on-demand release of CO from metal carbonyl-caged graphene oxide nanomedicine [J].Advanced Materials,2015,27(42):6741.
[48] KANG J M,LI Z,ORGAN C L,et al.pH-controlled hydrogen sulfide release for myocardial ischemia-reperfusion injury[J].Journal of the American Chemical Society,2016,138(20):6336.
[49] FROST M C,MEYERHOFF M E.Controlled photoinitiated release of nitric oxide from polymer films containing S-nitroso-N-acetyl-dl-penicillamine derivatized fumed silica filler [J].Journal of the American Chemical Society,2004,126(5):1348.
[50] ZHANG X,TIAN G,YIN W Y,et al.Controllable generation of nitric oxide by near-infrared-sensitized upconversion nanoparticles for tumor therapy[J].Advanced Functional Materials,2015,25(20):3049.
[51] FAN W P,BU W B,ZHANG Z,et al.X-ray radiation-controlled no-release for on-demand depth-independent hypoxic radiosensitization[J].Angewandte Chemie International Edition,2015,54(47):14026.
[52] FAN J,HE N Y,HE Q J,et al.A novel self-assembled sandwich nanomedicine for NIR-responsive release of NO[J].Nanoscale,2015,7(47):20055.
[53] YANG F,CHEN P,HE W,et al.Bubble microreactors triggered by an alternating magnetic field as diagnostic and therapeutic delivery devices[J].Small,2010,6(12):1300.
[54] KUDO S,NAGASAKI Y.A novel nitric oxide-based anticancer therapeutics by macrophage-targeted poly(L-arginine)-based nanoparticles[J].Journal of Controlled Release,2015,217:256.
[55] FAN W P,LU N,HUANG P,et al.Glucose-responsive sequential generation of hydrogen peroxide and nitric oxide for synergistic cancer starving-like/gas therapy[J].Angewandte Chemie International Edition,2017,56(5):1229.
[56] FLOREA A M,BÜSSELBERG D.Cisplatin as an anti-tumor drug:cellular mechanisms of activity,drug resistance and induced side effects[J].Cancers,2011,3(1):1351.
[57] JOHNSTONE T C,SUNTHARALINGAM K,LIPPARD S J.The next generation of platinum drugs:targeted Pt(Ⅱ)agents,nanoparticle delivery,and Pt(Ⅳ)prodrugs[J].Chemical Reviews,2016,116(5):3436.
[58] SANGILIYANDI G.Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model[J].International Journal of Nanomedicine,2010,5:753.
[59] SOENEN S J,PARAK W J,REJMAN J,et al.(Intra)cellular stability of inorganic nanoparticles:effects on cytotoxicity,particle functionality,and biomedical applications[J].Chemical Reviews,2015,115(5):2109.
[60] ZHANG Y F,YANG Y C,JIANG S S,et al.Degradable silver-based nanoplatform for synergistic cancer starving-like/metal ion therapy[J].Materials Horizons,2019,6(1):169.

备注/Memo

备注/Memo:
收稿日期:2019-08-26
基金项目:国家重点研究计划(2017YFD0401301); 国家自然科学基金(21878337,21676291); 江苏省农业科技自主创新基金(CX(18)3039); 东吴科技创新创业领军人才(WC201816)
作者简介:崔志芹(1971—),女,副教授,E-mail:zhiqin.cui@163.com; 于颖(联系人),副教授,E-mail:yyingazz@163.com.
引用格式:崔志芹,祝忠林,黄德春,等.葡萄糖氧化酶纳米药物介导癌症联合治疗的应用进展[J].南京工业大学学报(自然科学版),2020,42(2):135-141.
CUI Zhiqin, ZHU Zhonglin, HUANG Dechun, et al. Advances in the application of glucose oxidase nanodrugs mediated combinational cancer therapy[J].Journal of Nanjing Tech University(Natural Science Edition),2020,42(2):135-141..
更新日期/Last Update: 2020-03-20