|本期目录/Table of Contents|

[1]满孝卫,杨星墀,刘朵,等.地震作用下斜交空心板桥地震响应分析及其评价[J].南京工业大学学报(自然科学版),2020,42(03):319-325.
 MAN Xiaowei,YANG Xingchi,LIU Duo,et al.Analysis and evaluation for seismic response of skew hollow slab bridge under seismic action[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2020,42(03):319-325.
点击复制

地震作用下斜交空心板桥地震响应分析及其评价()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
42
期数:
2020年03期
页码:
319-325
栏目:
出版日期:
2020-05-20

文章信息/Info

Title:
Analysis and evaluation for seismic response of skew hollow slab bridge under seismic action
文章编号:
1671-7627(2020)03-0319-07
作者:
满孝卫1杨星墀2刘朵3李雪红2
1.江苏宿淮盐高速公路管理有限公司,江苏 淮安 223006; 2.南京工业大学 土木工程学院,江苏 南京 211800; 3.苏交科集团股份有限公司,江苏 南京 210017
Author(s):
MAN Xiaowei1YANG Xingchi2LIU Duo3LI Xuehong2
1. Jiangsu Suhuaiyan Expressway Limited Liability Company, Huaian 223006, China; 2. College of Civil Engineering, Nanjing Tech University, Nanjing 211800, China; 3. Jiangsu Transportation Research Institute Co. Ltd., Nanjing 210017, China
关键词:
地震作用 斜交空心板桥 地震响应 设计建议
Keywords:
seismic action skew hollow slab bridge seismic response design suggestions
分类号:
U442.5+5
文献标志码:
A
摘要:
针对斜交空心板桥,运用有限元方法分析地震作用下桥梁的地震响应特性,并对其抗震性能进行评价,对不满足要求的地震响应提出应对措施。结果表明:在地震作用下,斜交桥的地震响应特性较直桥更为复杂,靠近承台的墩柱和桩基的地震响应较中间墩柱大,可达到中间墩柱地震响应的1.1~1.6倍; 盖梁内部产生轴向压力和拉力; 主梁扭转效应显著,支座受力分布不均匀,部分支座发生脱空和超压,处于斜桥锐角最边缘处的支座最易脱空,从锐角至钝角方向压力逐渐增大。在地震作用下,墩柱受剪、支座受剪、受压及变形均可能不满足承载能力的要求,并且支座会发生滑移。在设计时,需考虑盖梁轴力其对受弯及受剪承载力的影响; 需选取适宜的支座型号,使其满足承载能力和变形的要求; 对支座脱空问题,可通过调整支座竖向刚度予以控制,或设置抗拉支座; 对支座滑移问题,可通过采取防落梁措施予以解决,横桥向可设置抗震挡块,纵桥向可设置纵向挡块、限位锚栓或拉索式连梁装置。
Abstract:
In view of skew hollow slab bridge, the seismic response of the bridge under the action of earthquake was analyzed by using finite element method, and its seismic performance was evaluated, furthermore the countermeasures for the seismic response that did not meet the requirements were put forward. Results showed that under the seismic action, the seismic response of skew bridge was more complex than that of straight bridge. The seismic response of pier column and pile foundation close to bearing platform were larger than those of intermediate pier columns, which could reach 1.1-1.6 times of the seismic response of intermediate pier column; axial compression and tension were generated in the capping beams; the torsional effect of main beam was significant, and the distribution of bearing force was uneven, meanwhile some abutments were hollowed and over pressured, which was at the extreme edge of skew bridge acute angle. The abutment at the edge was easy to be detached, and the pressure increased gradually from acute angle to obtuse angle. Under the action of earthquake, the shear of pier column, shear of abutment, compression and deformation might not meet the requirements of bearing capacity, and the abutment would slip. In the design procedure, it was necessary to consider the influence of the cover beam’s axial force on the bending and shear bearing capacity. To select the appropriate abutment type to meet the requirements of bearing capacity and deformation. To solve the problem of abutment void, it could be controlled by adjusting the vertical stiffness of the abutment, or setting the tensile abutment. To solve the abutment sliding problem, the anti-falling beam measures could be taken, and the anti-seismic blocking could be set in the transverse direction of the bridge, longitudinal block, limit anchor bolt or cable coupling device could be set in longitudinal bridge direction.

参考文献/References:

[1] 曹翔宗.地震作用下斜交桥平扭耦合效应分析[D].北京:北京交通大学,2013.
  
[2] 余辉.公路斜交桥抗震性能指标与易损性分析[D].北京:北京交通大学,2016.
[3] MALEKI S.Seismic design force for single-span slab-girders skewed bridges[J].Electronic Journal of Structural Engineering,2001(2):135.
[4] MALEKI S.Free vibration of skewed bridges[J].Journal of Vibration and Control,2001,7(7):935.
[5] MALEKI S.Free vibration of continuous slab-beam skewed bridges[J].Journal of Sound and Vibration,2002,255(4):793.
[6] 卢明奇,杨庆山,李英勇.斜度对斜交桥地震作用下的扭转效应影响[J].哈尔滨工程大学学报,2012,33(2):155.
[7] 石岩,王东升,孙治国,等.隔震斜交连续梁桥地震反应及环境温度影响研究[J].振动与冲击,2014,33(14):118.
[8] 李刚.桩-土动力相互作用的研究[D].成都:西南交通大学,2018.
[9] 林康,宋丽娜,胡晓宇.综述日本公路桥梁规范中支座极端事件的防止[J].特种结构,2015,32(3):49.
[10] 张钦宇,闫聚考,许宏伟,等.地震作用下桥梁防碰撞及防落梁措施研究综述[J].地震工程与工程振动,2017,37(2):132.
[11] 罗进.梁式桥地震碰撞响应与防落梁措施研究[D].重庆:重庆交通大学,2014.
[12] 宋波,马勇,张尊科,等.强震下梁与桥台碰撞特性及防撞防落梁措施研究[J].土木工程学报,2018,51(增刊2):68.
[13] 赵秋红,张冀豪,陈宝春.整体式斜交桥抗震性能分析[J].地震工程与工程振动,2018,38(4):34.
[14] 许祥,刘伟庆,徐秀丽,等.考虑限位器影响的山区连续梁桥地震响应分析[J].南京工业大学学报(自然科学版),2012,34(3):1.
[15] 黄小国,李建中,张哲.连续梁桥纵桥向防落梁装置结构模式对比研究[J].同济大学学报(自然科学版),2009,37(9):1146.
[16] 李雪红,孙磊,徐秀丽,等.满足高铁桥梁双重性能需求的新型减震装置研发及力学性能研究[J].振动与冲击,2019,38(15):245.
[17] 李雪红,李文琳,徐秀丽,等.新型抗冲击型黏滞阻尼器的力学性能研究[J].土木工程学报,2018,51(增刊1):85.
[18] 潘安,徐秀丽,李雪红,等.板式橡胶支座桥梁纵桥向墩梁相对位移碰撞效应分析[J].南京工业大学学报(自然科学版),2016,38(1):74.
[19] 王军文,吴天宇,闫聚考.斜交简支梁桥地震碰撞反应参数分析[J].振动与冲击,2017,36(3):209.
[20] 王军文,吴天宇,李少华,等.斜交简支梁桥纵向地震碰撞反应精细化研究[J].振动与冲击,2016,35(8):194.

备注/Memo

备注/Memo:
收稿日期:2019-11-14
基金项目:国家自然科学基金(51778289)
作者简介:满孝卫(1968—),男,高级工程师,E-mail:m8007@qq.com; 李雪红(联系人),教授,E-mail: lixuehongnj@163.com.
引用格式:满孝卫,杨星墀,刘朵,等.地震作用下斜交空心板桥地震响应分析及其评价[J].南京工业大学学报(自然科学版),2020,42(3):319-325.
MAN Xiaowei, YANG Xingchi, LIU Duo, et al. Analysis and evaluation for seismic response of skew hollow slab bridge under seismic action[J].Journal of Nanjing Tech University(Natural Science Edition),2020,42(3):319-325..
更新日期/Last Update: 2020-05-31