|本期目录/Table of Contents|

[1]郭赵元,陈仲扬,江臣,等.长联大跨复杂桥梁抗震设计及其方案优化[J].南京工业大学学报(自然科学版),2020,42(03):333-341.
 GUO Zhaoyuan,CHEN Zhongyang,JIANG Chen,et al.Seismic design and scheme optimization for long span and long unit complex bridges[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2020,42(03):333-341.
点击复制

长联大跨复杂桥梁抗震设计及其方案优化()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
42
期数:
2020年03期
页码:
333-341
栏目:
出版日期:
2020-05-20

文章信息/Info

Title:
Seismic design and scheme optimization for long span and long unit complex bridges
文章编号:
1671-7627(2020)03-0333-09
作者:
郭赵元1陈仲扬2江臣1张赵铨3李升玉4程梦梦3李雪红3
1.江苏省交通工程建设局,江苏 南京 210004; 2.江苏京沪高速公路有限公司,江苏 淮安 223300; 3.南京工业大学 土木工程学院,江苏 南京 211800; 4.东南大学建筑设计研究院有限公司,江苏 南京 210096
Author(s):
GUO Zhaoyuan1 CHEN Zhongyang2 JIANG Chen1 ZHANG Zhaoquan3 LI Shengyu4 CHENG mengmeng3 LI Xuehong3
1. Jiangsu Provincial Transportation Engineering Construction Bureau, Nanjing 210004, China; 2.Jiangsu Jinghu Highways Co. Ltd., Huaian 223300, China; 3. College of Civil Engineering, Nanjing Tech University, Nanjing 211800, China; 4. Southeast University Architecture Design Institute Co. Ltd., Nanjing 210096, China
关键词:
长联大跨连续梁桥 减隔震方案 地震响应 墩梁连接方式 伸缩缝位移
Keywords:
long span and long unit continuous bridge seismic isolation scheme seismic response pier beam connection modes expansion joint
分类号:
U442.5+5
文献标志码:
A
摘要:
长联大跨连续梁桥因其跨越能力大、伸缩缝少等优点,应用较为广泛,且跨径联长有不断增大的趋势。该类桥梁在地震作用下的地震响应较为复杂,并且温度变形较大,受减隔震方案的支座选取及约束体系影响较大,在抗震设计时应予以考虑。本文以某长联大跨复杂连续梁桥为研究对象,建立有限元模型,对其抗震性能进行分析。结果表明:采用常规的设计方案不满足抗震要求,需进行减隔震设计。分别设计了单墩固定和双墩固定两种形式的墩梁连接方式,并从温度作用下产生的附加内力、伸缩缝位移、支座和墩柱的地震响应、减震率等方面进行了系统的对比分析,提出最优减隔震方案。分析表明:双墩固定方案的地震响应相对于单墩固定方案稍小,减隔震效率相对较高,且伸缩缝位移相对较小; 双面摩擦摆+黏滞阻尼器方案地震响应最小,减震效果最好,但阻尼器易漏油,维护成本高; 钢支座(边墩)+高阻尼橡胶支座(中墩)方案支座剪力偏大; 综合考虑温度变化影响、地震响应、减震效果以及减隔震方案的可维护性和经济性等各方面的影响,双墩固定的钢支座(中支座)+高阻尼橡胶支座(边支座)方案较优。
Abstract:
Long-span continuous-girder bridges are widely used due to their advantages of large spanning capacity and few expansion joints. The seismic response of this type of bridge under earthquake is relatively complicated, and the temperature deformation is large. It is greatly affected by the support selection and restraint system of the seismic isolation and isolation scheme, which should be considered in the seismic design. This paper took a long-span complex continuous beam bridge as the research object,a finite element model was established, and its seismic performance was analyzed. The results showed that the conventional design scheme did not meet the seismic requirements, and required seismic isolation design. Different types of pier beam connection modes were designed for single-pier fixed and double-pier fixed, respectively.A systematic comparative analysis was conducted in terms of additional internal force under temperature, displacement of expansion joints, seismic response of bearings and pier columns, and shock absorption rate. The optimal seismic isolation scheme was put forward. The analysis showed that the seismic response of the two-pier fixed scheme was slightly smaller than that of the single-pier fixed scheme, the seismic isolation efficiency was relatively high, and the displacement of the expansion joint was relatively small, the seismic response of the friction pendulum bearing+damper scheme was the smallest, and the vibration reduction was the best, but the damper was prone to oil leakage and high maintenance costs. The steel bearing(side pier)+high damping rubber bearing(medium pier)scheme had a large shear force. Comprehensively consider the effects of temperature changes, seismic response, and reduction the seismic effects and the maintainability and economical impact of seismic isolation schemes were all factors. The double-pier fixed steel bearing(medium bearing)+high-damping rubber bearing(side bearing)scheme was better.

参考文献/References:

[1] 卓卫东,孙颖,谷音.长大公路混凝土连续梁桥抗震方案比选[J].土木工程与管理学报,2011,28(3):313.
[2] 陈列,胡京涛.桥梁减隔震技术[M].北京:中国铁道出版社,2014.
[3] 叶爱君,管仲国.桥梁抗震[M].北京:人民交通出版社,2011.
[4] SYMANS M D,CHARNEY F A,WHITTAKER A S,et al.Energy dissipation systems for seismic applications:current practice and recent developments[J].Journal of Structural Engineering,2008,134(1):3.
[5] 习强.桥梁抗震设计及减隔震技术应用[J].交通世界,2018(12):108.
[6] 左志鹏,王义强.减隔震技术在连续梁桥中的应用[J].防灾减灾工程学报,2013,33(增刊1):154.
[7] 陈彦江,郭凯敏,李勇,等.桥梁高阻尼隔震橡胶支座性能试验研究[J].振动与冲击,2015,34(9):136.
[8] 曾武华,孙海朋,卓卫东.早期大跨径连续梁桥改造中的抗震方案比选[J].福州大学学报(自然科学版),2013,41(4):505.
[9] 刘正楠,陈兴冲,马华军,等.高速铁路大跨长联连续梁桥减隔震方案优化研究[J].世界地震工程,2017,33(4):129.
[10] 赵人达,贾毅,占玉林,等.强震区多跨长联连续梁桥减隔震设计[J].浙江大学学报(工学版),2018,52(5):886.
[11] 汤虎,李建中.连续梁桥固定墩减震设计方法研究[J].土木工程学报,2011,44(12):64.
[12] 方海,李升玉,王曙光,等.高烈度区连续梁桥的减震设计方法研究[J].地震工程与工程振动,2005,25(6):178.
[13] 毛玉东,李建中.大跨连续梁桥纵向减震机理和减震效果分析[J].同济大学学报(自然科学版),2016,44(2):185.
[14] 贾毅,赵人达,廖平,等.高烈度地区多跨长联连续梁桥抗震体系研究[J].桥梁建设,2017,47(5):41.
[15] 夏修身,崔靓波,陈兴冲,等.长联大跨连续梁桥隔震技术应用研究[J].桥梁建设,2015,45(4):39.
[16] 邓继华,陈铖.大跨度连续梁桥的延性和减隔震设计[J].交通世界,2017(增刊1):95.
[17] 王瑞龙,李建中,庄鑫,等.非规则连续梁桥减隔震支座的合理布置[J].世界地震工程,2015,31(1):197.
[18] 王强.大跨长联连续梁桥地震反应分析及减隔震研究[D].成都:西南交通大学,2010.
[19] 徐秀丽,段好安,郎冬梅,等.预应力混凝土大跨连续梁桥隔震设计[J].公路交通科技,2009,26(8):46.
[20] 郭磊,李建中,范立础.大跨度连续梁桥减隔震设计研究[J].土木工程学报,2006,39(3):81.
[21] 徐秀丽,李雪红,刘伟庆,等.大型减隔震桥梁结构分析方法[J].南京工业大学学报(自然科学版),2009,31(1):78.
[22] 胡文源,邹晋华.时程分析法中有关地震波选取的几个注意问题[J].南方冶金学院学报,2003,24(4):25.

备注/Memo

备注/Memo:
收稿日期:2020-02-29
基金项目:国家自然科学基金(51778289)
作者简介:郭赵元(1992—),男,E-mail:993726728@qq.com; 李雪红(联系人),教授,E-mail:lixuehongnj@163.com.
引用格式:郭赵元,陈仲扬,江臣,等.长联大跨复杂桥梁抗震设计及其方案优化[J].南京工业大学学报(自然科学版),2020,42(3):333-341.
GUO Zhaoyuan, CHEN Zhongyang, JIANG Chen, et al. Seismic design and scheme optimization for long span and long unit complex bridges[J].Journal of Nanjing Tech University(Natural Science Edition),2020,42(3):333-341..
更新日期/Last Update: 2020-05-31