|本期目录/Table of Contents|

[1]吴晓栋,宋梓豪,王伟,等.气凝胶材料的研究进展[J].南京工业大学学报(自然科学版),2020,42(04):405-451.[doi:10.3969/j.issn.1671-7627.2020.04.001]
 WU Xiaodong,SONG Zihao,WANG Wei,et al.Advances of aerogels materials[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2020,42(04):405-451.[doi:10.3969/j.issn.1671-7627.2020.04.001]
点击复制

气凝胶材料的研究进展()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
42
期数:
2020年04期
页码:
405-451
栏目:
出版日期:
2020-07-17

文章信息/Info

Title:
Advances of aerogels materials
文章编号:
1671-7627(2020)04-0405-47
作者:
吴晓栋宋梓豪王伟崔艺黄舜天严文倩马悦程赵一帆黄龙金李博雅林本兰崔升沈晓冬
南京工业大学 材料科学与工程学院 江苏先进无机功能复合材料协同创新中心,江苏 南京 211800
Author(s):
WU Xiaodong SONG Zihao WANG Wei CUI Yi HUANG ShuntianYAN Wenqian MA Yuecheng ZHAO Yifan HUANG LongjinLI Boya LIN Benlan CUI Sheng SHEN Xiaodong
Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, College of Materials Science and Engineering,Nanjing Tech University,Nanjing 211800, China
关键词:
气凝胶 复合气凝胶 氧化物 碳化物 氮化物 石墨烯 量子点 聚合物 生物质 碳气凝胶 隔热材料 吸附 催化剂 生物医用 储能转化
Keywords:
aerogels composite aerogels oxide carbide nitride graphene quantum dots polymer biomass carbon aerogels thermal insulation material adsorption catalysis biomedical application enegy storage and transformation
分类号:
TB332;TB383;TB35;TQ110
DOI:
10.3969/j.issn.1671-7627.2020.04.001
文献标志码:
A
摘要:
气凝胶材料是一种由纳米粒子或聚合物分子链组成的具备三维纳米结构的多孔材料,具有低密度、高孔隙率、高孔体积和高比表面积等结构特点,显现出优异的光、热、声、电和力学等特性,在航空航天、石油化工、环境保护、建筑保温、能量储存与转化等领域具有广泛的应用价值。迄今为止,气凝胶的种类已由最初的SiO2气凝胶发展到了具有特定功能的各类新型气凝胶,从而有效拓宽了气凝胶的应用范围。气凝胶材料通常采用溶胶-凝胶、老化、溶剂置换并结合超临界干燥、冷冻干燥或常压干燥等过程制备。气凝胶材料按照组成可以分为单组分气凝胶和多组分气凝胶,其中单组分气凝胶主要包括氧化物气凝胶、碳化物气凝胶、氮化物气凝胶、石墨烯气凝胶(GA)、量子点气凝胶、聚合物基有机气凝胶、生物质基有机及C气凝胶和其他种类气凝胶,而多组分气凝胶由两种及以上单组分气凝胶构成或者由纤维、晶须、纳米管等作为增强体所形成的气凝胶复合材料。本文主要介绍各类单组分及其复合气凝胶材料的制备方法及其在隔热、吸附、催化、储能转化和生物医用等领域的应用,对近年来气凝胶在制备及应用方面所取得的突破性进展进行了综述。同时也指出在基础研究方面亟需通过理论计算和实验研究相结合,实现气凝胶网络结构生长调控、表面组成及化学结构调控和高温组织结构稳定性调控; 在功能型气凝胶材料开发方面,通过反应机制深入研究气凝胶材料结构和性能关联,实现高性能的多功能型气凝胶材料突破性进展; 在规模化应用方面,寻找成本低廉的前驱体原料和降低气凝胶干燥成本是气凝胶产业化进程长远发展的关键。
Abstract:
Aerogels are porous materials with three-dimensional networks, which consist of nanoparticles and polymer molecular chains. Aerogels possess distinct textural characteristics, such as low bulk density, high porosity, high pore volume and high specific surface area, etc., which therefore endows them excellent optics, thermal, acoustic, electric, and mechanical properties. Aerogels have many promising applications in many fields such as aerospace, petrochemical engineering, environmental protection, building energy saving, energy storage and conversion, etc. Up to now, the development of aerogels materials has changed from the original research of silica aerogels to the interest of aerogels with specific functions, which therefore broadens the applications of aerogels. Aerogels are mainly prepared via processes of sol-gel, aging, solvent exchange combined with supercritical drying, freezing drying of ambient pressure drying techniques. Aerogels materials can be classified as single-component aerogels and composite aerogels, while the single-component aerogels can be composed of oxide-based aerogels, carbide-based aerogels, nitride-based aerogels, graphene-based aerogels, quantum dots based aerogels, polymer-based organic aerogels, biomass-based organic and carbon aerogels, and other kinds of aerogels materials. The composite aerogels are formed by several kinds of single-component aerogels, and the aerogels composites reinforced by the fibers, whiskers, and nanotubes, etc. In the summary, we are focusing on the recent advances of their constitutes, microstructures, preparation techniques and their applications in the field of thermal insulations, adsorbents, photo-electrical catalyst, energy storage and transformation, biological and medical system. Moreover, the prospects of aerogels application development are also reviewed in this paper. In the term of fundamental research, the net-work growth control, the surface constitutes and chemical structure control, and the textural control under elevated temperatures for aerogels need to be solved by the combination of theoretical calculation and experiments. In the term of functional aerogels research, the linkage between structures and properties should be studied via reaction mechanism, which will accelerate the essential development of functional aerogels. In the term of large-scale production, the use of more cost-effective precursors and the energy-saving drying technique are the main two issues for aerogels’ long-term development.

参考文献/References:

[1] CAI B,SAYEVICH V,GAPONIK N,et al.Emerging hierarchical aerogels:self-assembly of metal and semiconductor nanocrystals[J].Advanced Materials,2018,30(33):1707518.
[2] HAN X,HASSAN K T,HARVEY A J,et al.Bioinspired synthesis of monolithic and layered aerogels[J].Advanced Materials,2018,30(23):1706294.
[3] HAGEDORN K,LI W,LIANG Q J,et al.Catalytically doped semiconductors for chemical gas sensing:aerogel-like aluminum-containing zinc oxide materials prepared in the gas phase[J].Advanced Functional Materials,2016,26(20):3424.
[4] SONG J W,CHEN C J,YANG Z,et al.Highly compressible,anisotropic aerogel with aligned cellulose nanofibers[J].ACS Nano,2017,12(1):140.
[5] OU H H,YANG P J,LIN L H,et al.Carbon nitride aerogels for the photoredox conversion of water[J].Angewandte Chemie International Edition,2017,56(36):10905.
[6] KHALILY M A,EREN H,AKBAYRAK S,et al.Facile synthesis of three-dimensional Pt-TiO2 nano-networks:a highly active catalyst for the hydrolytic dehydrogenation of ammonia-borane[J].Angewandte Chemie International Edition,2016,55(40):12257.
[7] DU A,ZHOU B,ZHANG Z H,et al.A special material or a new state of matter:a review and reconsideration of the aerogel[J].Materials,2013,6(3):941.
[8] PEKALA R W.Organic aerogels from the polycondensation of resorcinol with formaldehyde[J].Journal of Materials Science,1989,24(9):3221.
[9] PRAKASH S S,JEFFREY BRINKER C,HURD A J,et al.Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shrinkage[J].Nature,1995,374:439.
[10] HE Y L,XIE T.Advances of thermal conductivity models of nanoscale silica aerogel insulation material[J].Applied Thermal Engineering,2015,81:28.
[11] LI C,GONG Z,DING L K,et al.Synthesis of low shrinkage monolith alumina aerogels by surface modification and ambient pressure drying[J].Micro & Nano Letters,2018,13(9):1240.
[12] KONG Y,SHEN X D,CUI S,et al.Preparation of monolith SiC aerogel with high surface area and large pore volume and the structural evolution during the preparation[J].Ceramics International,2014,40(6):8265.
[13] LEVENTIS N,SADEKAR A G,CHANDRASEKARAN N,et al.Click synthesis of monolithic silicon carbide aerogels from polyacrylonitrile-coated 3D silica networks[J].Chemistry of Materials,2010,22(9):2790.
[14] OMIDI Z,GHASEMI A,BAKHSHI S R.Synthesis and characterization of Si3N4 wires from binary carbonaceous silica aerogels[J].Powder Technology,2014,252:20.
[15] XIA W,QU C,LIANG Z B,et al.High-performance energy storage and conversion materials derived from a single metal-organic framework/graphene aerogel composite[J].Nano Letters,2017,17(5):2788.
[16] ZHANG X F,LIU P,DUAN Y X,et al.Graphene/cellulose nanocrystals hybrid aerogel with tunable mechanical strength and hydrophilicity fabricated by ambient pressure drying technique[J].RSC Advances,2017,7(27):16467.
[17] LEVENTIS N,SOTIRIOU-LEVENTIS C,CHANDRASEKARAN N,et al.Multifunctional polyurea aerogels from isocyanates and water:a structure-property case study[J].Chemistry of Materials,2010,22(24):6692.
[18] GUO H Q,MEADOR M A B,MCCORKLE L,et al.Tailoring properties of cross-linked polyimide aerogels for better moisture resistance,flexibility,and strength[J].ACS Applied Materials & Interfaces,2012,4(10):5422.
[19] AHAMAD T,NAUSHAD M,RUKSANA,et al.N/S doped highly porous magnetic carbon aerogel derived from sugarcane bagasse cellulose for the removal of bisphenol-A[J].International Journal of Biological Macromolecules,2019,132:1031.
[20] LEI E,LI W,SUN J M,et al.N-doped carbon aerogels obtained from APMP fiber aerogels saturated with rhodamine dye and their application as supercapacitor electrodes[J].Applied Sciences,2019,9(4):618.
[21] BROWN P,HOPE-WEEKS L J.The synthesis and characterization of zinc ferrite aerogels prepared by epoxide addition[J].Journal of Sol-Gel Science and Technology,2009,51(2):238.
[22] AKIMOV Y K.Fields of application of aerogels(review)[J].Instruments and Experimental Techniques,2003,46(3):287.
[23] JONES S M.Aerogel:space exploration applications[J].Journal of Sol-Gel Science and Technology,2006,40(2):351.
[24] FRICKE J,EMMERLING A.Aerogels-preparation,properties,applications[M]//Chemistry,Spectroscopy and Applications of Sol-gel Glasses.Berlin:Springer,1992:37.
[25] 林高用,张栋,卢斌.非超临界干燥法制备块状SiO2气凝胶[J].中南大学学报(自然科学版),2006,37(6):1117.
[26] 高庆福,张长瑞,冯坚,等.氧化硅气凝胶隔热复合材料研究进展[J].材料科学与工程学报,2009,27(2):302.
[27] WANG L J,ZHAO S Y,YANG M.Structural characteristics and thermal conductivity of ambient pressure dried silica aerogels with one-step solvent exchange/surface modification[J].Materials Chemistry and Physics,2009,113(1):485.
[28] VENKATESWARA RAO A,BHAGAT S D,HIRASHIMA H,et al.Synthesis of flexible silica aerogels using methyltrimethoxysilane(MTMS)precursor[J].Journal of Colloid and Interface Science,2006,300(1):279.
[29] LIU Y,CHEN Z F,ZHANG J X,et al.Ultralight and thermal insulation carbon foam/SiO2 aerogel composites[J].Journal of Porous Materials,2019,26(5):1305.
[30] HUANG Y J,HE S,CHEN G N,et al.Fast preparation of glass fiber/silica aerogel blanket in ethanol & water solvent system[J].Journal of Non-Crystalline Solids,2019,505:286.
[31] 伊希斌,王修春,张晶,等.自生纳米纤维增强SiO2气凝胶的制备及性能研究[J].无机化学学报,2014,30(3):603.
[32] YU H T,LIU D,DUAN Y Y,et al.Theoretical model of radiative transfer in opacified aerogel based on realistic microstructures[J].International Journal of Heat and Mass Transfer,2014,70:478.
[33] PARALE V G,JUNG H N R,HAN W,et al.Improvement in the high temperature thermal insulation performance of Y2O3 opacified silica aerogels[J].Journal of Alloys and Compounds,2017,727:871.
[34] XU L,JIANG Y G,FENG J Z,et al.Infrared-opacified Al2O3-SiO2 aerogel composites reinforced by SiC-coated mullite fibers for thermal insulations[J].Ceramics International,2015,41(1):437.
[35] GAO J F,SONG X,HUANG X W,et al.Facile preparation of polymer microspheres and fibers with a hollow core and porous shell for oil adsorption and oil/water separation[J].Applied Surface Science,2018,439:394.
[36] WAHI R,CHUAH L A,CHOONG T S Y,et al.Oil removal from aqueous state by natural fibrous sorbent:an overview[J].Separation and Purification Technology,2013,113:51.
[37] MORALES-FLOREZ V,PIÑERO M,BRAZA V,et al.Absorption capacity,kinetics and mechanical behaviour in dry and wet states of hydrophobic DEDMS/TEOS-based silica aerogels[J].Journal of Sol-Gel Science and Technology,2017,81(2):600.
[38] 陈海锋,阳香华,林泽卿,等.氨基改性二氧化硅气凝胶的制备及其对镍离子的吸附性能[J].化工环保,2019,39(5):568.
[39] YUAN D S,ZHANG T,GUO Q,et al.Recyclable biomass carbon@SiO2@MnO2 aerogel with hierarchical structures for fast and selective oil-water separation[J].Chemical Engineering Journal,2018,351:622.
[40] EL-SHAHIDY M M,SHALABY A S A,EL-SHELTAWY S T.Oil spills clean-up by super hydrophobic organo-modified silica aerogel monoliths treated by different solvents in ambient condition[J].Materials Research Express,2019,6(10):105546.
[41] KONG Y,SHEN X D,FAN M H,et al.Dynamic capture of low-concentration CO2 on amine hybrid silsesquioxane aerogel[J].Chemical Engineering Journal,2016,283:1059.
[42] KONG Y,JIANG G D,FAN M H,et al.A new aerogel based CO2 adsorbent developed using a simple sol-gel method along with supercritical drying[J].Chemical Communications,2014,50(81):12158.
[43] CAREY J H,LAWRENCE J,TOSINE H M.Photodechlorination of PCB’S in the presence of titanium dioxide in aqueous suspensions[J].Bulletin of Environmental Contamination and Toxicology,1976,16(6):697.
[44] DJELLABI R,ZHANG L Q,YANG B,et al.Sustainable self-floating lignocellulosic biomass-TiO2@aerogel for outdoor solar photocatalytic Cr(VI)reduction[J].Separation and Purification Technology,2019,229:115830.
[45] DJELLABI R,YANG B,WANG Y,et al.Carbonaceous biomass-titania composites with TiOC bonding bridge for efficient photocatalytic reduction of Cr(VI)under narrow visible light[J].Chemical Engineering Journal,2019,366:172.
[46] JONOIDI-JAFARI A,KERMANI M,HOSSEINI-BANDEGHARAEI A,et al.Synthesis and characterization of Ag/TiO2/composite aerogel for enhanced adsorption and photo-catalytic degradation of toluene from the gas phase[J].Chemical Engineering Research and Design,2019,150:1.
[47] LIU J,LIU J X,SHI F,et al.F/W co-doped TiO2-SiO2 composite aerogels with improved visible light-driven photocatalytic activity[J].Journal of Solid State Chemistry,2019,275:8.
[48] PARALE V G,KIM T,PHADTARE V D,et al.Enhanced photocatalytic activity of a mesoporous TiO2 aerogel decorated onto three-dimensional carbon foam[J].Journal of Molecular Liquids,2019,277:424.
[49] WEI X,CAI H D,FENG Q G,et al.Synthesis of co-existing phases Sn-TiO2 aerogel by ultrasonic-assisted sol-gel method without calcination[J].Materials Letters,2018,228:379.
[50] 乔秀丽,曾祥惠,张凯强,等.二氧化钛/石墨烯气凝胶的制备及其可见光催化性能[J].化工环保,2018,38(5):535.
[51] NASERI N,YOUSEFI M,MOSHFEGH A Z.A comparative study on photoelectrochemical activity of ZnO/TiO2 and TiO2/ZnO nanolayer systems under visible irradiation[J].Solar Energy,2011,85(9):1972.
[52] JING F,SUO H,CUI S,et al.Facile synthesis of TiO2/Ag composite aerogel with excellent antibacterial properties[J].Journal of Sol-Gel Science and Technology,2018,86(3):590.
[53] SUO H,PENG C X,JING F,et al.Facile preparation of TiO2/ZnO composite aerogel with excellent antibacterial activities[J].Materials Letters,2019,234:253.
[54] ZHANG M J,CHEN Y X,CHEN B J,et al.Fabrication of a three-dimensional visible-light-driven Ag-AgBr/TiO2/graphene aerogel composite for enhanced photocatalytic destruction of organic dyes and bacteria[J].New Journal of Chemistry,2019,43(13):5088.
[55] ALWIN S,RAMASUBBU V,SAHAYA-SHAJAN X.TiO2 aerogel-metal organic framework nanocomposite:a new class of photoanode material for dye-sensitized solar cell applications[J].Bulletin of Materials Science,2018,41:27.
[56] RAMASUBBU V,KUMAR P R,MOTHI E M,et al.Highly interconnected porous TiO2-Ni-MOF composite aerogel photoanodes for high power conversion efficiency in quasi-solid dye-sensitized solar cells[J].Applied Surface Science,2019,496:143646.
[57] YANG S,CAI Y,CHENG Y W,et al.Monolithic co-aerogels of carbon/titanium dioxide as three dimensional nanostructured electrodes for energy storage[J].Journal of Power Sources,2012,218:140.
[58] ZHU W J,YANG H,XIE Y,et al.Hierarchically porous titania xerogel monoliths:synthesis,characterization and electrochemical properties[J].Materials Research Bulletin,2016,73:48.
[59] STOCKER C,SCHNEIDER M,BAIKER A.Zirconia aerogels and xerogels:influence of solvent and acid on structural properties[J].Journal of Porous Materials,1995,2(2):171.
[60] TANABE K.Surface and catalytic properties of ZrO2[J].Materials Chemistry and Physics,1985,13:347.
[61] WU Z G,ZHAO Y X,XU L P,et al.Preparation of zirconia aerogel by heating of alcohol-aqueous salt solution[J].Journal of Non-Crystalline Solids,2003,330(1):274.
[62] SUH D J,PARK T,HAN H,et al.Synthesis of high-surface-area zirconia aerogels with a well-developed mesoporous texture using CO2 supercritical drying[J].Chemistry of Materials,2002,14(4):1452.
[63] SUN Q,ZHANG Y L,DENG J F,et al.A novel preparation process for thermally stable ultrafine tetragonal zirconia aerogel[J].Applied Catalysis A(General),1997,152(2):L165.
[64] WANG Q P,LI X L,FEN W P,et al.Synthesis of crack-free monolithic ZrO2 aerogel modified by SiO2[J].Journal of Porous Materials,2014,21(2):127.
[65] LIU B X,GAO M,LIU X C,et al.Monolithic zirconia aerogel from polyacetylacetonatozirconium precursor and ammonia hydroxide gel initiator:formation mechanism,mechanical strength and thermal properties[J].RSC Advances,2018,8(72):41603.
[66] LIU B X,LIU X C,ZHAO X F,et al.High-strength,thermal-stable ZrO2 aerogel from polyacetylacetonatozirconium[J].Chemical Physics Letters,2019,715:109.
[67] HE J,ZHAO H Y,LI X L,et al.Large-scale and ultra-low thermal conductivity of ZrO2 fibrofelt/ZrO2-SiO2 aerogels composites for thermal insulation[J].Ceramics International,2018,44(8):8742.
[68] HOU X B,ZHANG R B,FANG D N.An ultralight silica-modified ZrO2-SiO2 aerogel composite with ultra-low thermal conductivity and enhanced mechanical strength[J].Scripta Materialia,2018,143:113.
[69] ZU G Q,SHEN J,ZOU L P,et al.Nanoengineering super heat-resistant,strong alumina aerogels[J].Chemistry of Materials,2013,25(23):4757.
[70] LIU B X,GAO M,LIU X C,et al.Thermally stable nanoporous ZrO2/SiO2 hybrid aerogels for thermal insulation[J].ACS Applied Nano Materials,2019,2(11):7299.
[71] 高庆福,张长瑞,冯坚,等.氧化铝气凝胶复合材料的制备与隔热性能[J].国防科技大学学报,2008,30(4):39.
[72] WAGLE R,YOO J K.Preparation of highly porous Al2O3 aerogel by one-step solvent-exchange and ambient-pressure drying[J].International Journal of Applied Ceramic Technology,2020,17(3):1201.
[73] 余煜玺,马锐,王贯春,等.高比表面积、低密度块状Al2O3气凝胶的制备及表征[J].材料工程,2019,47(12):136.
[74] 孙雪峰,吴玉胜,李来时,等.锶掺杂对氧化铝气凝胶高温热稳定性的影响[J].功能材料,2018,49(9):9078.
[75] ZHONG Y,KONG Y,ZHANG J J,et al.Facile synthesis of monolithic carbon/alumina composite aerogels with high compressive strength using different inorganic aluminium salts[J].Journal of Porous Materials,2014,21(5):653.
[76] WU X D,ZHONG Y,KONG Y,et al.Preparation and characterization of C/Al2O3 composite aerogel with high compressive strength and low thermal conductivity[J].Journal of Porous Materials,2015,22(5):1235.
[77] WEN S Y,REN H B,ZHU J Y,et al.Fabrication of Al2O3 aerogel-SiO2 fiber composite with enhanced thermal insulation and high heat resistance[J].Journal of Porous Materials,2019,26(4):1027.
[78] ZHONG Y,SHAO G F,WU X D,et al.Robust monolithic polymer(resorcinol-formaldehyde)reinforced alumina aerogel composites with mutually interpenetrating networks[J].RSC Advances,2019,9(40):22942.
[79] 孙晶晶,胡子君,吴文军,等.氧化铝气凝胶复合高温隔热瓦的制备及性能[J].宇航材料工艺,2017,47(3):33.
[80] BAETENS R,JELLE B P,GUSTAVSEN A.Aerogel insulation for building applications:a state-of-the-art review[J].Energy and Buildings,2011,43(4):761.
[81] ZHANG H Y,LYU S Y,ZHOU X M,et al.Super light 3D hierarchical nanocellulose aerogel foam with superior oil adsorption[J].Journal of Colloid and Interface Science,2019,536:245.
[82] WU Z S,YANG S B,SUN Y,et al.3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction[J].Journal of the American Chemical Society,2012,134(22):9082.
[83] HUANGFU Y M,RUAN K P,QIU H,et al.Fabrication and investigation on the PANI/MWCNT/thermally annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites[J].Composites Part A(Applied Science and Manufacturing),2019,121:265.
[84] LU W J,STEIGERWALT E S,MOORE J T,et al.Carbothermal transformation of a graphitic carbon nanofiber/silica aerogel composite to a SiC/silica nanocomposite[J].Journal of Nanoscience and Nanotechnology,2004,4(7):803.
[85] 徐子颉,汪飞,路珊,等.类气凝胶结构的碳-碳化硅制备研究[J].人工晶体学报,2008,37(3):730.
[86] WORSLEY M A,KUNTZ J D,SATCHER J H,et al.Synthesis and characterization of monolithic,high surface area SiO2/C and SiC/C composites[J].Journal of Materials Chemistry,2010,20(23):4840.
[87] KONG Y,ZHONG Y,SHEN X D,et al.Effect of silica sources on nanostructures of resorcinol-formaldehyde/silica and carbon/silicon carbide composite aerogels[J].Microporous and Mesoporous Materials,2014,197:77.
[88] WIENER M,REICHENAUER G,BRAXMEIER S,et al.Carbon aerogel-based high-temperature thermal insulation[J].International Journal of Thermophysics,2009,30(4):1372.
[89] ZERA E,CAMPOSTRINI R,ARAVIND P R,et al.Novel SiC/C aerogels through pyrolysis of polycarbosilane precursors[J].Advanced Engineering Materials,2014,16(6):814.
[90] AN Z M,ZHANG R B,FANG D N.Synthesis of monolithic SiC aerogels with high mechanical strength and low thermal conductivity[J].Ceramics International,2019,45(9):11368.
[91] SERAJI M M,GHAFOORIAN N S,BAHRAMIAN A R,et al.Preparation and characterization of C/SiO2/SiC aerogels based on novolac/silica hybrid hyperporous materials[J].Journal of Non-Crystalline Solids,2015,425:146.
[92] SERAJI M M,GHAFOORIAN N S,BAHRAMIAN A R.Investigation of microstructure and mechanical properties of novolac/silica and C/SiO2/SiC aerogels using mercury porosimetry method[J].Journal of Non-Crystalline Solids,2016,435:1.
[93] GHAFOORIAN N S,BAHRAMIAN A R,SERAJI M M.Investigation of the effect of rice husk derived Si/SiC on the morphology and thermal stability of carbon composite aerogels[J].Materials & Design,2015,86:279.
[94] CHABI S,ROCHA V G,GARCÍA-TUÑÓN E,et al.Ultralight,strong,three-dimensional SiC structures[J].ACS Nano,2016,10(2):1871.
[95] SU L,WANG H J,NIU M,et al.Ultralight,recoverable,and high-temperature-resistant SiC nanowire aerogel[J].ACS Nano,2018,12(4):3103.
[96] LI B B,YUAN X S,GAO Y,et al.A novel SiC nanowire aerogel consisted of ultra long SiC nanowires[J].Materials Research Express,2019,6(4):045030.
[97] XIE M X,WU X D,LIU J X,et al.In-situ synthesis and textural evolution of the novel carbonaceous SiC/mullite aerogel via polymer-derived ceramics route[J].Ceramics International,2017,43(13):9896.
[98] KARAKUSCU A,PONZONI A,ARAVIND P R,et al.Gas sensing behavior of mesoporous SiOC glasses[J].Journal of the American Ceramic Society,2013,96(8):2366.
[99] FENG J,ZHAO N,JIANG Y G,et al.Preparation and characterization of Si-C-O aerogels using tetraethoxysilane and dimethyldiethoxysilane as precursors[J].Rare Metal Materials and Engineering,2012,41(S3):458.
[100] QIU L,LI Y M,ZHENG X H,et al.Thermal-conductivity studies of macro-porous polymer-derived SiOC ceramics[J].International Journal of Thermophysics,2014,35(1):76.
[101] DIRE S,BOROVIN E,NARISAWA M,et al.Synthesis and characterization of the first transparent silicon oxycarbide aerogel obtained through H2 decarbonization[J].Journal of Materials Chemistry,2015,3(48):24405.
[102] MA J,YE F,LIN S J,et al.Large size and low density SiOC aerogel monolith prepared from triethoxyvinylsilane/tetraethoxysilane[J].Ceramics International,2017,43(7):5774.
[103] WU Z,CHENG X Q,ZHANG L,et al.Sol-gel synthesis of preceramic polyphenylsilsesquioxane aerogels and their application toward monolithic porous SiOC ceramics[J].Ceramics International,2018,44(12):14947.
[104] PRADEEP V S,AYANA D G,GRACZYK-ZAJAC M,et al.High rate capability of SiOC ceramic aerogels with tailored porosity as anode materials for Li-ion batteries[J].Electrochimica Acta,2015,157:41.
[105] ASSEFA D,ZERA E,CAMPOSTRINI R,et al.Polymer-derived SiOC aerogel with hierarchical porosity through HF etching[J].Ceramics International,2016,42(10):11805.
[106] XU Y K,MA H,XU J,et al.Mg-based bulk metallic glass composites with plasticity and gigapascal strength[J].Acta Materialia,2005,53(6):1857.
[107] KATOH Y,VASUDEVAMURTHY G,NOZAWA T,et al.Properties of zirconium carbide for nuclear fuel applications[J].Journal of Nuclear Materials,2013,441(1):718.
[108] 谢鹏超.可溶性前驱体法制备ZrC粉末的研究进展[J].当代化工研究,2016(7):52.
[109] 马宝霞,郭二军,王丽萍.ZrC超高温陶瓷复合材料的研究进展[J].材料导报,2013,27(3):49.
[110] YE L,QIU W F,LI H,et al.Preparation and characterization of ZrCO/C composite aerogels[J].Journal of Sol-Gel Science and Technology,2013,65(2):150.
[111] CUI S,SUO H,JING F,et al.Facile preparation of ZrCO composite aerogel with high specific surface area and low thermal conductivity[J].Journal of Sol-Gel Science and Technology,2018,86(2):383.
[112] WU X D,FAN M H,SHEN X D,et al.Silica aerogels formed from soluble silicates and methyl trimethoxysilane(MTMS)using CO2 gas as a gelation agent[J].Ceramics International,2018,44(1):821.
[113] SU L,LI M Z,WANG H J,et al.Resilient Si3N4 nanobelt aerogel as fire-resistant and electromagnetic wave-transparent thermal insulator[J].ACS Applied Materials & Interfaces,2019,11(17):15795.
[114] REWATKAR P M,TAGHVAEE T,SAEED A M,et al.Sturdy,monolithic SiC and Si3N4 aerogels from compressed polymer-cross-linked silica xerogel powders[J].Chemistry of Materials,2018,30(5):1635.
[115] KONG Y,ZHANG J Y,ZHAO Z Y,et al.Monolithic silicon nitride-based aerogels with large specific surface area and low thermal conductivity[J].Ceramics International,2019,45(13):16331.
[116] DING J,WU X D,SHEN X D,et al.Synthesis and textural evolution of mesoporous Si3N4 aerogel with high specific surface area and excellent thermal insulation property via the urea assisted sol-gel technique[J].Chemical Engineering Journal,2020,382:122880.
[117] YANG H X,YE F,LIU Q,et al.Microstructure and properties of the Si3N4/silica aerogel composites fabricated by the sol-gel method via ambient pressure drying[J].Materials & Design,2015,85:438.
[118] SONG Y X,LI B,YANG S W,et al.Ultralight boron nitride aerogels via template-assisted chemical vapor deposition[J].Scientific Reports,2015,5(1):10337.
[119] LINDQUIST D A,BOREK T T,KRAMER S J,et al.Formation and pore structure of boron nitride aerogels[J].Journal of the American Ceramic Society,1990,73(3):757.
[120] ROUSSEAS M,GOLDSTEIN A P,MICKELSON W,et al.Synthesis of highly crystalline sp2-bonded boron nitride aerogels[J].ACS Nano,2013,7(10):8540.
[121] LEI W W,PORTEHAULT D,LIU D,et al.Porous boron nitride nanosheets for effective water cleaning[J].Nature Communications,2013,4(1):1777.
[122] WANG J M,LIU D,LI Q X,et al.Lightweight,superelastic yet thermoconductive boron nitride nanocomposite aerogel for thermal energy regulation[J].ACS Nano,2019,13(7):7860.
[123] LI G Y,ZHU M Y,GONG W B,et al.Boron nitride aerogels with super-flexibility ranging from liquid nitrogen temperature to 1 000 ℃[J].Advanced Functional Materials,2019,29(20):1900188.
[124] HARLEY-TROCHIMCZYK A,PHAM T,CHANG J,et al.Gas sensors:platinum nanoparticle loading of boron nitride aerogel and its use as a novel material for low-power catalytic gas sensing[J].Advanced Functional Materials,2016,26(3):314.
[125] XU X,ZHANG Q Q,HAO M L,et al.Double-negative-index ceramic aerogels for thermal superinsulation[J].Science,2019,363:723.
[126] YANG H X,LI C M,YUE X D,et al.New BN/SiOC aerogel composites fabricated by the sol-gel method with excellent thermal insulation performance at high temperature[J].Materials & Design,2020,185:108217.
[127] TETER D M,HEMLEY R J.Low-compressibility carbon nitrides[J].Science,1996,271:53.
[128] QI H J,JI X D,SHI C,et al.Bio-templated 3D porous graphitic carbon nitride hybrid aerogel with enhanced charge carrier separation for efficient removal of hazardous organic pollutants[J].Journal of Colloid and Interface Science,2019,556:366.
[129] ZHANG M,HE L,SHI T,et al.Neat 3D C3N4 monolithic aerogels embedded with carbon aerogels via ring-opening polymerization with high photoreactivity[J].Applied Catalysis B(Environmental),2020,266:118652.
[130] LUO Z R,ZHONG Z J,HE H J,et al.Construction of three-dimensional ternary reduced graphene oxide-g-C3N4 nanosheets-AgBr aerogel for enhanced degradation of pollution under visible light[J].Desalination and Water Treatment,2020,173:77.
[131] YANG J,CHEN Y,XU P,et al.Fabrication of compressible and underwater superoleophobic carbon/g-C3N4 aerogel for wastewater purification[J].Materials Letters,2019,254:210.
[132] WANG G Q,HOU S,YAN C,et al.Three-dimensional porous vanadium nitride nanoribbon aerogels as Pt-free counter electrode for high-performance dye-sensitized solar cells[J].Chemical Engineering Journal,2017,322:611.
[133] 陈颖,邵高峰,吴晓栋,等.聚合物气凝胶研究进展[J].材料导报,2016,30(13):55.
[134] BIESMANS G,RANDALL D,FRANCAIS E,et al.Polyurethane-based organic aerogels’ thermal performance[J].Journal of Non-Crystalline Solids,1998,225:36.
[135] SAADATNIA Z,MOSANENZADEH S G,LI T,et al.Polyurethane aerogel-based triboelectric nanogenerator for high performance energy harvesting and biomechanical sensing[J].Nano Energy,2019,65:104019.
[136] BANG A,BUBACK C,SOTIRIOU-LEVENTIS C,et al.Flexible aerogels from hyperbranched polyurethanes:probing the role of molecular rigidity with poly(urethane acrylates)versus poly(urethane norbornenes)[J].Chemistry of Materials,2014,26(24):6979.
[137] CHIDAMBARESWARAPATTAR C,MCCARVER P M,LUO H Y,et al.Fractal multiscale nanoporous polyurethanes:flexible to extremely rigid aerogels from multifunctional small molecules[J].Chemistry of Materials,2013,25(15):3205.
[138] LEE J K,GOULD G L,RHINE W.Polyurea based aerogel for a high performance thermal insulation material[J].Journal of Sol-Gel Science and Technology,2009,49(2):209.
[139] WEIGOLD L,MOHITE D P,MAHADIK-KHANOLKAR S,et al.Correlation of microstructure and thermal conductivity in nanoporous solids:the case of polyurea aerogels synthesized from an aliphatic tri-isocyanate and water[J].Journal of Non-Crystalline Solids,2013,368:105.
[140] BIAN Q M,CHEN S Y,KIM B T,et al.Micromachining of polyurea aerogel using femtosecond laser pulses[J].Journal of Non-Crystalline Solids,2011,357(1):186.
[141] CHIDAMBARESWARAPATTAR C,LARIMORE Z,SOTIRIOU-LEVENTIS C,et al.One-step room-temperature synthesis of fibrous polyimide aerogels from anhydrides and isocyanates and conversion to isomorphic carbons[J].Journal of Materials Chemistry,2010,20(43):9666.
[142] LEVENTIS N,SOTIRIOU-LEVENTIS C,MOHITE D P,et al.Polyimide aerogels by ring-opening metathesis polymerization(ROMP)[J].Chemistry of Materials,2011,23(8):2250.
[143] GUO H Q,MEADOR M A B,MCCORKLE L,et al.Polyimide aerogels cross-linked through amine functionalized polyoligomeric silsesquioxane[J].ACS Applied Materials & Interfaces,2011,3(2):546.
[144] MEADOR M A B,MALOW E J,SILVA R,et al.Mechanically strong,flexible polyimide aerogels cross-linked with aromatic triamine[J].ACS Applied Materials & Interfaces,2012,4(2):536.
[145] DANIEL C,GIUDICE S,GUERRA G.Syndiotatic polystyrene aerogels with β,γ,and ε crystalline phases [J].Chemistry of Materials,2009,21(6):1028.
[146] LONGO S,MAURO M D,DANIEL C,et al.Rayleigh scattering by graphene-oxide in syndiotactic polystyrene aerogels[J].Carbon,2014,77:896.
[147] SONG X,YANG S W,HE L,et al.Ultra-flyweight hydrophobic poly(m-phenylenediamine)aerogel with micro-spherical shell structures as a high-performance selective adsorbent for oil contamination[J].RSC Advances,2014,4(90):49000.
[148] CHEN Y,YANG L,XU S H,et al.Ultralight aerogel based on molecular-modified poly(m-phenylenediamine)crosslinking with polyvinyl alcohol/graphene oxide for flow adsorption[J].RSC Advances,2019,9(40):22950.
[149] CARDEA S,SESSA M,REVERCHON E.Supercritical CO2 assisted formation of poly(vinylidenefluoride)aerogels containing amoxicillin,used as controlled release device[J].Journal of Supercritical Fluids,2011,59:149.
[150] ZHANG J Y,KONG Y,SHEN X D.Polyvinylidene fluoride aerogel with high thermal stability and low thermal conductivity[J].Materials Letters,2020,259:126890.
[151] WILLIAMS J C,MEADOR M A B,MCCORKLE L,et al.Synthesis and properties of step-growth polyamide aerogels cross-linked with triacid chlorides[J].Chemistry of Materials,2014,26(14):4163.
[152] HE S J,ZHANG Y,SHI X P,et al.Rapid and facile synthesis of a low-cost monolithic polyamide aerogel via sol-gel technology[J].Materials Letters,2015,144:82.
[153] MI H Y,JING X,MEADOR M A B,et al.Triboelectric nanogenerators made of porous polyamide nanofiber mats and polyimide aerogel film:output optimization and performance in circuits[J].ACS Applied Materials & Interfaces,2018,10(36):30596.
[154] XIE A,WU F,SUN M X,et al.Self-assembled ultralight three-dimensional polypyrrole aerogel for effective electromagnetic absorption[J].Applied Physics Letters,2015,106(22):222902.
[155] LI X W,XIE X L,LV R,et al.Nanostructured polypyrrole composite aerogels for a rechargeable flexible aqueous Zn-ion battery with high rate capabilities[J].Energy technology,2019,7(5):1801092.
[156] YU L J,YU L M,DONG Y B,et al.Compressible polypyrrole aerogel as a lightweight and wideband electromagnetic microwave absorber[J].Journal of Materials Science(Materials in Electronics),2019,30(6):5598.
[157] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306:666.
[158] GUO F,CREIGHTON M A,CHEN Y T,et al.Porous structures in stacked,crumpled and pillared graphene-based 3D materials[J].Carbon,2014,66:476.
[159] CHEN Z P,REN W C,GAO L B,et al.Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J].Nature Materials,2011,10(6):424.
[160] ZHANG W Y,LI Y X,PENG S Q.Facile synthesis of graphene sponge from graphene oxide for efficient dye-sensitized H2 evolution[J].ACS Applied Materials & Interfaces,2016,8(24):15187.
[161] XU Z,ZHANG Y,LI P G,et al.Strong,conductive,lightweight,neat graphene aerogel fibers with aligned pores[J].ACS Nano,2012,6(8):7103.
[162] XU Y X,SHENG K X,LI C,et al.Self-assembled graphene hydrogel via a one-step hydrothermal process[J].ACS Nano,2010,4(7):4324.
[163] LI J H,LI J Y,MENG H,et al.Ultra-light,compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids[J].Journal of Materials Chemistry,2014,2(9):2934.
[164] LIU T,HUANG M L,LI X F,et al.Highly compressible anisotropic graphene aerogels fabricated by directional freezing for efficient absorption of organic liquids[J].Carbon,2016,100:456.
[165] BORRAS A,GONCALVES G,MARBAN G,et al.Preparation and characterization of graphene oxide aerogels:exploring the limits of supercritical CO2 fabrication methods[J].Chemistry(A European Journal),2018,24(59):15903.
[166] BI H C,YIN K B,XIE X,et al.Low temperature casting of graphene with high compressive strength[J].Advanced Materials,2012,24(37):5124.
[167] HU H,ZHAO Z B,WAN W B,et al.Ultralight and highly compressible graphene aerogels[J].Advanced Materials,2013,25(15):2219.
[168] ZHANG X T,SUI Z Y,XU B,et al.Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources[J].Journal of Materials Chemistry,2011,21(18):6494.
[169] FAN Z,TNG D Z Y,LIM C X T,et al.Thermal and electrical properties of graphene/carbon nanotube aerogels[J].Colloids and Surfaces A(Physicochemical and Engineering Aspects),2014,445:48.
[170] SHENG K X,SUN Y Q,LI C,et al.Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering[J].Scientific Reports,2012,2(1):247.
[171] LI Y R,SHENG K X,YUAN W J,et al.A high-performance flexible fibre-shaped electrochemical capacitor based on electrochemically reduced graphene oxide[J].Chemical Communications,2013,49(3):291.
[172] ZAMANI S,TABRIZI N S.Removal of methylene blue from water by graphene oxide aerogel:thermodynamic,kinetic,and equilibrium modeling[J].Research on Chemical Intermediates,2015,41(10):7945.
[173] HE Y L,LI J H,LUO K,et al.Engineering reduced graphene oxide aerogel produced by effective γ-ray radiation-induced self-assembly and its application for continuous oil-water separation[J].Industrial & Engineering Chemistry Research,2016,55(13):3775.
[174] WANG W K,WU Y H,JIANG Z W,et al.Self-assembly of graphene oxide nanosheets in t-butanol/water medium under gamma-ray radiation[J].Chinese Chemical Letters,2017,29(6):931.
[175] REN J F,ZHANG X J,LU D L,et al.Fabrication of controllable graphene aerogel with superior adsorption capacity for organic solvents[J].Research on Chemical Intermediates,2018,44(9):5139.
[176] LI R Y,LIU L,LI Z J,et al.Graphene micro-aerogel based voltammetric sensing of p-acetamidophenol[J].Microchimica Acta,2017,184(5):1417.
[177] YANG H S,LI Z L,LU B,et al.Reconstruction of inherent graphene oxide liquid crys

相似文献/References:

[1]江国栋,沈晓冬,腾凯明,等.聚多硅氧烷为硅源的无裂痕块状气凝胶制备[J].南京工业大学学报(自然科学版),2011,33(03):33.
 JIANG Guodong,SHEN Xiaodong,TEN Kaiming,et al.Free-cracking monolithic aerogel prepared by silicon source of polyethoxydisiloxane[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2011,33(04):33.

备注/Memo

备注/Memo:
收稿日期:2019-12-16
基金项目:江苏省博士后科研资助计划(2019K005); 江苏省高等学校自然科学基金(15KJA430005,19KJB430023); 南京市留学人员科技创新项目; 中国博士后基金面上项目(2019M661781); 长江学者和创新团队发展计划(IRT_15R35)
作者简介:吴晓栋(1991—),男,讲师,E-mail:wuxiaodong@njtech.edu.cn; 崔升(联系人),教授,E-mail:scui@njtech.edu.cn; 沈晓冬(联系人),教授,E-mail:xdshen@njtech.edu.cn.
引用格式:吴晓栋,宋梓豪,王伟,等.气凝胶材料的研究进展[J].南京工业大学学报(自然科学版),2020,42(4):405-451.
WU Xiaodong, SONG Zihao, WANG Wei, et al. Advances of aerogels materials[J].Journal of Nanjing Tech University(Natural Science Edition),2020,42(4):405-451..
更新日期/Last Update: 2020-07-30