|本期目录/Table of Contents|

[1]何方,齐振涛.SiO2气凝胶微球的制备及其性能研究[J].南京工业大学学报(自然科学版),2020,42(04):467-476.[doi:10.3969/j.issn.1671-7627.2020.04.004]
 HE Fang,QI Zhentao.Preparation and properties of SiO2 aerogels microspheres[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2020,42(04):467-476.[doi:10.3969/j.issn.1671-7627.2020.04.004]
点击复制

SiO2气凝胶微球的制备及其性能研究()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
42
期数:
2020年04期
页码:
467-476
栏目:
出版日期:
2020-07-17

文章信息/Info

Title:
Preparation and properties of SiO2 aerogels microspheres
文章编号:
1671-7627(2020)04-0467-10
作者:
何方齐振涛
河南工业大学 材料科学与工程学院,河南 郑州 450001
Author(s):
HE Fang QI Zhentao
School of Material Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
关键词:
超临界CO2微乳液 SiO2气凝胶微球 内疏外亲 热导率 隔热性能
Keywords:
supercritical CO2 microemulsion SiO2 aerogels microspheres inner hydrophobic and outer hydrophilic thermal conductivity thermal insulation
分类号:
TB332
DOI:
10.3969/j.issn.1671-7627.2020.04.004
文献标志码:
A
摘要:
采用以花生油或硅油为油相形成油包SiO2溶胶或在超临界CO2中形成微乳液的乳液成球技术,结合CO2超临界干燥制备出SiO2气凝胶微球。先后用三甲基氯硅烷(TMCS)和3-氨丙基三羟基硅烷(KH-553)对微球进行内疏外亲改性,并采用吸水实验和接触角测试进行表征,最后将SiO2气凝胶微球做成涂料,研究其隔热性能。结果表明:不同工艺制备的SiO2气凝胶微球比表面积都较高,孔隙率均高达90%以上。以花生油或硅油为油相制备的SiO2气凝胶微球具有良好的介孔结构,孔径主要为5~20 nm。而在超临界CO2中形成微乳液制备的SiO2气凝胶微球具有小孔和介孔结构,孔径主要为0.02~10 nm。超临界CO2微乳液中制备的微球粒径相对分布较窄(0.02~8 μm),比表面积高达1 059.4 m2/g。经TMCS和KH-553先后改性的SiO2气凝胶微球具备内疏外亲的性能。将所制备的SiO2气凝胶微球做成涂料,热导率最低为0.02 W/(m·K),达到很好的隔热效果。
Abstract:
SiO2 aerogels microspheres were prepared by the emulsion pellet-forming technology with peanut oil or silicone oil as oil phase to form oil SiO2 sol or microemulsion in supercritical CO2, the microspheres were modified by three methyl silyl chloride(TMCS)and 3-propyl three hydroxyl silane(KH-553), and the method of appearance water absorption test and contact angle were used to characterize the microspheres. SiO2 aerogels microspheres were made into coatings and their thermal conductivity were measured. Results showed that the surface area of SiO2 aerogels microspheres prepared by different processes was higher and the porosity was higher than 90%. The SiO2 aerogels microspheres prepared with peanut oil or silicone oil as the oil phase had good mesoporous structures and the pore sizes were mainly 5-20 nm. However, the SiO2 aerogels microspheres prepared by forming microemulsion in supercritical CO2 had small holes and mesoporous structures, and the pore sizes were mainly 0.02-10 nm. The diameters of the microspheres prepared in supercritical CO2 microemulsion were relatively narrow(0.02-8 μm), and the specific surface areas were higher, up to 1 059.4 m2/g. The SiO2 aerogels microspheres modified by TMCS and KH-553 had the properties of internal and external affinity. The lowest thermal conductivity of the prepared SiO2 aerogels microspheres was 0.02 W/(m·K)and achieved good thermal insulation effect.

参考文献/References:

[1] KISTLER S S.Coherent expanded-aerogels[J].The Journal of Physical Chemistry,1932,36(1):52.
[2] ZHAO S Y,MALFAIT W J,GUERRERO-ALBURQUERQUE N,et al.Biopolymer aerogels and foams:chemistry,properties,and applications[J].Angewandte Chemie International Edition,2018,57(26):7580.
[3] FENG Q G,CHEN K,MA D C,et al.Synthesis of high specific surface area silica aerogel from rice husk ash via ambient pressure drying[J].Colloids and Surfaces A(Physicochemical and Engineering Aspects),2018,539:399.
[4] 林本兰,崔升,沈晓冬,等.六钛酸钾晶须掺杂改性气凝胶的结构和性能[J].南京工业大学学报(自然科学版),2012,34(1):20.
[5] WU T T,DONG J,GAN F,et al.Low dielectric constant and moisture-resistant polyimide aerogels containing trifluoromethyl pendent groups[J].Applied Surface Science,2018,440:595.
[6] WANG X,YU Z,JIAO L,et al.Aerogel perfusion-prepared h-BN/CNF composite film with multiple thermally conductive pathways and high thermal conductivity[J].Nanomaterials(Basel),2019,9(7):1051.
[7] MATSUYAMA K,MOROTOMI K,INOUE S,et al.Antibacterial and antifungal properties of Ag nanoparticle-loaded cellulose nanofiber aerogels prepared by supercritical CO2 drying[J].The Journal of Supercritical Fluids,2019,143:1.
[8] THAI Q B,SIANG T E,LE D K,et al.Advanced fabrication and multi-properties of rubber aerogels from car tire waste[J].Colloids and Surfaces A(Physicochemical and Engineering Aspects),2019,577:702.
[9] NOCENTINI K,ACHARD P,BIWOLE P,et al.Hygro-thermal properties of silica aerogel blankets dried using microwave heating for building thermal insulation[J].Energy and Buildings,2018,158:14.
[10] KEHRLE J,PURKAIT T K,KAISER S,et al.Superhydrophobic silicon nanocrystal-silica aerogel hybrid materials:synthesis,properties,and sensing application[J].Langmuir,2018,34(16):4888.
[11] MELLADO C,FIGUEROA T,BÁEZ R,et al.Development of graphene oxide composite aerogel with proanthocyanidins with hemostatic properties as a delivery system[J].ACS Applied Materials & Interfaces,2018,10(9):7717.
[12] 朱悦,吕莎莎,朱洁,等.超轻耐火SiO2纳米纤维气凝胶的制备及性能研究[J].合成纤维工业,2019,42(4):15.
[13] 仲亚,孔勇,沈晓冬,等.高强度块状C-Al2O3复合气凝胶的制备[J].南京工业大学学报(自然科学版),2012,34(5):26.
[14] BHAGAT S D,KIM Y H,AHN Y S,et al.Textural properties of ambient pressure dried water-glass based silica aerogel beads:one day synthesis[J].Microporous and Mesoporous Materials,2006,96(1/2/3):237.
[15] SARAWADE P B,KIM J K,HILONGA A,et al.Production of low-density sodium silicate-based hydrophobic silica aerogel beads by a novel fast gelation process and ambient pressure drying process[J].Solid State Sciences,2010,12(5):911.
[16] LIU M,GAN L,PANG Y,et al.Synthesis of titania-silica aerogel-like microspheres by a water-in-oil emulsion method via ambient pressure drying and their photocatalytic properties[J].Colloids & Surfaces A Physicochemical & Engineering Aspects,2008,317(1):490.
[17] ALNAIEF M,SMIRNOVA I.In situ production of spherical aerogel microparticles[J].The Journal of Supercritical Fluids,2011,55(3):1118.
[18] SUI R H,RIZKALLA A S,CHARPENTIER P A.Synthesis and formation of silica aerogel particles by a novel sol-gel route in supercritical carbon dioxide[J].The Journal of Physical Chemistry B,2004,108(32):11886.
[19] CHATTERJEE M,CHATTERJEE A,IKUSHIMA Y,et al.Preparation of silica sphere with porous structure in supercritical carbon dioxide[J].Journal of Colloid and Interface Science,2010,348(1):57.
[20] REVERCHON E,ADAMI R,SCOGNAMIGLIO M,et al.Beclomethasone microparticles for wet inhalation,produced by supercritical assisted atomization[J].Industrial and Engineering Chemistry Research,2010,49(24):12747.
[21] CHATTOPADHYAY P,GUPTA R B.Supercritical CO2-based formation of silica nanoparticles using water-in-oil microemulsions[J].Industrial & Engineering Chemistry Research,2003,42(3):465.
[22] EVERETT D H.Manual of symbols and terminology for physicochemical quantities and units[J].Pure and Applied Chemistry,1972,31(4):577.
[23] KARTAL A M,ERKEY C.Surface modification of silica aerogels by hexamethyldisilazane-carbon dioxide mixtures and their phase behavior[J].The Journal of Supercritical Fluids,2010,53(1/2/3):115.
[24] WAGH P B,INGALE S V.Comparison of some physico-chemical properties of hydrophilic and hydrophobic silica aerogels[J].Ceramics International,2002,28(1):43.
[25] 吴战武,刘渝,沈晓冬,等.MTES疏水改性SiO2气凝胶修饰活性炭复合材料的制备及结构表征[J].南京工业大学学报(自然科学版),2012,34(3):103.

备注/Memo

备注/Memo:
收稿日期:2019-10-31
基金项目:河南省自然科学基金(182300410181)
作者简介:何方(1968—),男,教授,E-mail:hefang@haut.edu.cn.
引用格式:何方,齐振涛.SiO2气凝胶微球的制备及其性能研究[J].南京工业大学学报(自然科学版),2020,42(4):467-476.
HE Fang, QI Zhentao. Preparation and properties of SiO2 aerogels microspheres[J].Journal of Nanjing Tech University(Natural Science Edition),2020,42(4):467-476..
更新日期/Last Update: 2020-07-30