|本期目录/Table of Contents|

[1]黄舜天,安文然,沈晓冬,等.PEG/石墨烯气凝胶相变复合材料的制备及其性能研究[J].南京工业大学学报(自然科学版),2020,42(04):485-492.[doi:10.3969/j.issn.1671-7627.2020.04.006]
 HUANG Shuntian,AN Wenran,SHEN Xiaodong,et al.Preparation and properties of PEG/graphene aerogels phase change composites[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2020,42(04):485-492.[doi:10.3969/j.issn.1671-7627.2020.04.006]
点击复制

PEG/石墨烯气凝胶相变复合材料的制备及其性能研究()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
42
期数:
2020年04期
页码:
485-492
栏目:
出版日期:
2020-07-17

文章信息/Info

Title:
Preparation and properties of PEG/graphene aerogels phase change composites
文章编号:
1671-7627(2020)04-0485-08
作者:
黄舜天12安文然1沈晓冬12吴晓栋12崔升12
1.南京工业大学 材料科学与工程学院 材料化学工程国家重点实验室,江苏 南京 211800; 2. 江苏先进无机功能复合材料协同创新中心, 江苏 南京 211800
Author(s):
HUANG Shuntian12 AN Wenran1 SHEN Xiaodong12 WU Xiaodong12 CUI Sheng12
1. State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China; 2. Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 211800, China
关键词:
相变材料 聚乙二醇(PEG) 石墨烯气凝胶 隔热性能 水热法 热熔渗法
Keywords:
phase change materials polyethylene glycol(PEG) graphene aerogel thermal insulation performance hydrothermal method thermal infiltration method
分类号:
TQ138.1
DOI:
10.3969/j.issn.1671-7627.2020.04.006
文献标志码:
A
摘要:
以聚乙二醇(PEG)为相变材料,石墨烯气凝胶(GA)为基体,分别采用水热法和热熔渗法两种方法制备PEG/GA相变复合材料。利用X线衍射仪(XRD)、扫描电子显微镜(SEM)和傅里叶变换红外光谱仪(FT-IR)、热重-差示扫描量热仪(TG-DSC)等对相变复合材料的微观结构、化学组成和热物性参数进行表征,同时采用液相泄漏和表面温度测试实验表征材料的防泄漏和隔热性能。结果表明:水热法的最优水热反应温度为180 ℃,而最优反应时间为12 h,PEG与GA为物理混合且复合良好,无高温液相泄漏发生,相变复合材料的熔化焓为139.4 J/g,结晶焓为175.7 J/g,而50次热循环后的熔化焓降低到139.4 J/g,结晶焓减小到149.0 J/g。热熔渗法中最优热熔渗温度为90 ℃,而最优浸渍时间为45 min,PEG与GA为物理混合且PEG分子链以特定方向排布于石墨烯片层中间,同时该复合材料也无液相泄漏发生,相变复合材料的熔化焓为205.2 J/g,结晶焓为223.4 J/g,而50次热循环后相变焓基本没有变化,热熔渗法PEG/GA相变复合材料具有更优异的结构和性能。
Abstract:
Polyethylene glycol(PEG)was used as phase change material and graphene aerogel(GA)was adopted as porous matrix to prepare the PEG/GA composite phase change material by hydrothermal method and thermal infiltration techniques, respectively. The microstructure, chemical constitutes, and thermophysical properties were investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM), Fourier transform infrared spectroscopy(FT-IR), and thermogravimetric-differential scanning calorimetry(TG-DSC)techniques. The liquid leakage measurement and thermal response test were also carried out for evaluating the shape-stabilized property and thermal insulation property of the PCM composites. Results indicated that the optimum conditions for the hydrothermal technique were the temperature of 180 ℃ and reaction time of 12 h. PEG and GA were physically combined without liquid leakage. The melting enthalpy was 139.4 J/g with the crystallization enthalpy of 175.7 J/g, and the melting enthalpy after 50 thermal cycles decreased to 139.4 J/g with the crystallization enthalpy of 149.0 J/g. The optimal impregnation temperature was 90 ℃ and the optimal time was 45 min in thermal infiltration method. PEG molecules were distributed in the lamellar gaps of GA nanoflakes with a regular orientation, and no liquid phase leakage was observed. It was noted that the melting enthalpy was 205.2 J/g with the crystallization enthalpy of 223.4 J/g, and no significant enthalpy was observed after 50 thermal cycling test. In addition, the structure and performance of PEG/GA by thermal infiltration was better than that of PEG/GA for hyrothermal technique and pristine GA.

参考文献/References:

[1] 冷光辉,曹惠,彭浩,等.储热材料研究现状及发展趋势[J].储能科学与技术,2017,6(5):1058.
[2] CUI Y P,XIE J C,LIU J P,et al.A review on phase change material application in building[J].Advances in Mechanical Engineering,2017,9(6):82.
[3] 周全,郭红斌,李清海,等.相变储能材料节能评价试验[J].南京工业大学学报(自然科学版),2013,35(3):51.
[4] 路阳,彭国伟,王智平,等.熔融盐相变储热材料的研究现状及发展趋势[J].材料导报,2011,25(21):38.
[5] XU B,ZHANG X L,LI C L,et al.The effect of nanometer oxide additive on the heat-conducting property of Barium hydroxide octahydrate[J].Journal of Nanoscience and Nanotechnology,2015,15(4):3168.
[6] LIU Y S,YANG Y Z.Preparation and thermal properties of Na2CO3·12H2O-Na2HPO4·12H2O eutectic hydrate salt as a novel phase change material for energy storage[J].Applied Thermal Engineering,2017,112:606.
[7] 郑立辉,宋光森,葛立芳,等.无机材料基复合相变材料的制备[J].广东化工,2011,38(12):11.
[8] 王鑫,方建华,刘坪,等.相变材料的研究进展[J].功能材料,2019,50(2):2070.
[9] 李琳,琚诚兰,戴浩,等.脂肪酸类相变储能建筑材料的研究及应用[J].现代化工,2015,35(8):46.
[10] 黄雪,崔英德,尹国强,等.正癸酸-棕榈酸-硬脂酸三元脂肪酸复合相变材料的热性能[J].化工新型材料,2015,43(1):114.
[11] UMAIR M M,ZHANG Y A,IQBAL K,et al.Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage:a review[J].Applied Energy,2019,235:846.
[12] 何媚质,杨鲁伟,张振涛.有机-无机复合相变材料的研究进展[J].化工进展,2018,37(12):4709.
[13] 何丽红,李文虎,李菁若,等.聚乙二醇复合相变材料的研究进展[J].材料导报,2014,28(1):71.
[14] PIELICHOWSKA K,PIELICHOWSKI K.Phase change materials for thermal energy storage[J].Progress in Materials Science,2014,65:67.
[15] KARAMAN S,KARAIPEKLI A,SARI A,et al.Polyethylene glycol(PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage[J].Solar Energy Materials and Solar Cells,2011,95(7):1647.
[16] QIAN T T,LI J H,MA H W,et al.Adjustable thermal property of polyethylene glycol/diatomite shape-stabilized composite phase change material[J].Polymer Composites,2016,37(3):854.
[17] SUN K Y,KOU Y,ZHENG H,et al.Using silicagel industrial wastes to synthesize polyethylene glycol/silica-hydroxyl form-stable phase change materials for thermal energy storage applications[J].Solar Energy Materials and Solar Cells,2018,178:139.
[18] WANG C M,CAI Z Y,CHEN K,et al.Preparation and thermal properties of shape-stabilized polyethylene glycol/mesoporous silica composite phase change materials for thermal energy storage[J].Energy Storage,2019,1(2):45.DOI:10.1002/est2.45.
[19] 沈晓冬,吴晓栋,孔勇,等.气凝胶纳米材料的研究进展[J].中国材料进展,2018,37(9):671.
[20] DU A,ZHOU B,ZHANG Z H,et al.A special material or a new state of matter:a review and reconsideration of the aerogel[J].Materials,2013,6(3):941.
[21] ZHOU X,XIAO H,JIAN F,et al.Pore structure modification of silica matrix infiltrated with paraffin as phase change material[J].Chemical Engineering Research and Design,2010,88(8):1013.
[22] ZHONG Y J,ZHOU M,HUANG F Q,et al.Effect of graphene aerogel on thermal behavior of phase change materials for thermal management[J].Solar Energy Materials and Solar Cells,2013,113:195.
[23] XIE T,HE Y L,TONG Z X.Analysis of insulation performance of multilayer thermal insulation doped with phase change material[J].International Journal of Heat and Mass Transfer,2016,102:934.
[24] LI J H,LI J Y,MENG H,et al.Ultra-light,compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids[J].Journal of Materials Chemistry A,2014,2(9):2934.
[25] XU Y X,SHENG K X,LI C,et al.Self-assembled graphene hydrogel via a one-step hydrothermal process[J].ACS Nano,2010,4(7):4324.
[26] NARDECCHIA S,CARRIAZO D,FERRER M L,et al.Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene:synthesis and applications[J].Chemical Society Reviews,2013,42(2):794.
[27] LI C,SHI G Q.Three-dimensional graphene architectures[J].Nanoscale,2012,4(18):5549.
[28] Fu Y,XIONG W L,WANG J Y,et al.Polyethylene glycol based graphene aerogel confined phase change materials with high thermal stability[J].Journal of Nanoscience and Nanotechnology,2018,18(5):3341.
[29] SARI A,BICER A,HEKIMOGLU G.Effects of carbon nanotubes additive on thermal conductivity and thermal energy storage properties of a novel composite phase change material[J].Journal of Composite Materials,2018,53:2967.
[30] HE Y L,LI J H,LUO K,et al.Engineering reduced graphene oxide aerogel produced by effective γ-ray radiation-induced self-assembly and its application for continuous oil-water separation[J].Industrial & Engineering Chemistry Research,2016,55(13):3775.
[31] TANG L S,ZHAO X,FENG C P,et al.Bacterial cellulose/MXene hybrid aerogels for photodriven shape-stabilized composite phase change materials[J].Solar Energy Materials and Solar Cells,2019,203:110174.

备注/Memo

备注/Memo:
收稿日期:2019-11-15
基金项目:江苏省博士后科研资助计划(2019K005); 江苏省高等学校自然科学基金面上项目(19KJB430023); 南京市留学人员科技创新项目; 中国博士后基金面上项目(2019M661781); 国家留学基金委资助(201908320194)
作者简介:黄舜天(1997—),男,E-mail: 18761809128@163.com; 吴晓栋(联系人),讲师,E-mail:wuxiaodong@njtech.edu.cn; 崔升(联系人),教授,E-mail:scui@njtech.edu.cn.
引用格式:黄舜天, 安文然, 沈晓冬,等.PEG/石墨烯气凝胶相变复合材料的制备及其性能研究[J].南京工业大学学报(自然科学版),2020,42(4):485-492.
HUANG Shuntian, AN Wenran, SHEN Xiaodong, et al. Preparation and properties of PEG/graphene aerogels phase change composites[J].Journal of Nanjing Tech University(Natural Science Edition),2020,42(4):485-492..
更新日期/Last Update: 2020-07-30