|本期目录/Table of Contents|

[1]韩宝军,吴海银,丁成成,等.高导热聚酰亚胺复合材料的性能[J].南京工业大学学报(自然科学版),2020,42(04):522-527.[doi:10.3969/j.issn.1671-7627.2020.04.011]
 HAN Baojun,WU Haiyin,DING Chengcheng,et al.Performance of high thermal conductivity polyimide composites[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2020,42(04):522-527.[doi:10.3969/j.issn.1671-7627.2020.04.011]
点击复制

高导热聚酰亚胺复合材料的性能()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
42
期数:
2020年04期
页码:
522-527
栏目:
出版日期:
2020-07-17

文章信息/Info

Title:
Performance of high thermal conductivity polyimide composites
文章编号:
1671-7627(2020)04-0522-06
作者:
韩宝军吴海银丁成成俞娟王晓东黄培
南京工业大学 化工学院 材料化学工程国家重点实验室,江苏 南京 211800
Author(s):
HAN Baojun WU Haiyin DING Chengcheng YU Juan WANG Xiaodong HUANG Pei
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemieal Engineering, Nanjing Tech University, Nanjing 211800, China
关键词:
六方氮化硼(h-BN) 聚酰亚胺(PI) 高导热复合材料 摩擦磨损
Keywords:
hexagonal boron nitride(h-BN) polyimide(PI) high thermal conductivity composite friction and wear
分类号:
TQ323.7
DOI:
10.3969/j.issn.1671-7627.2020.04.011
文献标志码:
A
摘要:
采用原位聚合法,以六方氮化硼(h-BN)为填料、均苯四甲酸二酐(PMDA)和4,4’-二氨基二苯醚(ODA)为单体、N,N-二甲基乙酰胺(DMAc)为溶剂制备功能性聚酰亚胺(PI)复合材料。考察填料h-BN质量分数对PI复合材料导热系数、力学性能和摩擦磨损性能的影响。采用傅里叶变换红外光谱仪(FT-IR)、X线衍射仪(XRD)、电子万能试验机、导热系数测试仪和摩擦磨损试验机等对PI复合材料进行表征。结果表明:与纯PI相比,h-BN改性后的PI复合材料的拉伸强度和弹性模量均有较大的提高; 随着h-BN质量分数的提高,PI复合材料的导热系数逐渐增大(最大导热系数为0.289 W/(m·K)),干摩擦因数逐渐降低(最低摩擦因数为0.196),磨擦表面温度显著下降,磨损率呈先减小后增大的趋势(最低磨损率为6.76×10-14 m3/(N·m))。
Abstract:
Functional polyimide(PI)composites was prepared by in-situ polymerization with hexagonal boron nitride(h-BN)as filler, pyromellitic dianhydride(PMDA)and 4,4’-diaminodiphenyl ether(ODA)as monomers, and N,N-dimethylacetamide(DMAc)as solvent. The effects of filler content on thermal conductivity, mechanical properties, and friction and wear properties of composites were investigated. The samples were characterized by Fourier transform infrared spectroscopy(FT-IR), X-ray diffractometer(XRD), electronic universal testing machine, thermal conductivity tester, friction and wear tester. Results showed that compared with pure polyimide, the tensile strength and elastic modulus of PI composites modified by h-BN were greatly improved. With the increase of h-BN content, the thermal conductivity of the PI composites increased gradually(the maximum thermal conductivity was 0.289 W/(m·K)), the dry friction coefficient decreased gradually(the minimum friction coefficient was 0.196), the temperature of the friction surface decreased significantly, and the wear rate decreased first and then increased(the minimum wear rate was 6.76×10-14 m3/(N·m)).

参考文献/References:

[1] ZHU L,YOU L,SHI Z,et al.An investigation on the graphitic carbon nitride reinforced polyimide composite and evaluation of its tribological properties[J].Journal of Applied Polymer Science,2017,134(41):45403.
[2] ZHAO G,DING Q,WANG Q.Comparative study on the tribological properties of the polyimide composites reinforced with different fibers[J].Polymer Composites,2016,37(8):2541.
[3] ZHAO G,WU C,ZHANG L,et al.Friction and wear behavior of PI and PTFE composites for ultrasonic motors[J].Polymers for Advanced Technologies,2018,29(5):1487.
[4] CHEN B,YANG J,WANG J,et al.Fiber hybrid polyimide-based composites reinforced with carbon fiber and poly-p-phenylene benzobisthiazole fiber:tribological behaviors under sea water lubrication[J].Polymer Composites,2016,37(6):1650.
[5] SONG J,ZHAO G,DING Q,et al.Reciprocating friction and wear of polyimide composites filled with solid lubricants[J].Journal of Polymer Engineering,2018,38(4):363.
[6] 汪怀远,杨淑慧,张帅,等.聚醚醚酮基复合材料端面摩擦热的有限元数值模拟[J].高分子材料科学与工程,2013,29(3):182.
[7] 董凤霞,侯国梁,刘亮,等.稀土改性对碳纤维增强聚酰亚胺复合材料在不同温度下摩擦学性能的影响[J].摩擦学学报,2017,37(2):148.
[8] LI D,YANG W,CHEN Y,et al.Effect of modified graphene on thermal,mechanical and tribological performance of polyimide-based composites[J].Materials Research Express,2018,5(6):65304.
[9] GOPAL P M,SOORYA-PRAKASH K,NAGARAJA S,et al.Effect of weight fraction and particle size of CRT glass on the tribological behaviour of Mg-CRT-BN hybrid composites[J].Tribology International,2017,116:338.
[10] MIN Y J,KANG K,KIM D.Development of polyimide films reinforced with boron nitride and boron nitride nanosheets for transparent flexible device applications[J].Nano Research,2018,11(5):2366.
[11] 徐鸿飞,陈林,俞南杰,等.氮化硼导热复合材料的制备与性能[J].功能材料,2016,47(2):148.
[12] 徐晨,武向南,张庆新,等.增韧导热环氧树脂/氮化硼复合材料的制备与表征[J].化工进展,2018,37(12):4752.
[13] 杨娜,王农跃,姚艳梅,等.氮化硼和纳米金刚石混杂填充聚酰亚胺导热复合材料的制备与表征[J].高分子材料科学与工程,2017,33(1):153.
[14] 丁纪恒,豆慧敏,彭晚军,等.生物基六方氮化硼分散液在环氧复合材料中的应用[J].功能材料,2018,49(1):1156.
[15] DUAN C,YUAN D,YANG Z,et al.High wear-resistant performance of thermosetting polyimide reinforced by graphitic carbon nitride(g-C3N4)under high temperature[J].Composites Part A,2018,113:200.

备注/Memo

备注/Memo:
收稿日期:2019-04-24
作者简介:韩宝军(1990—),男,E-mail:hbjchem@126.com; 黄培(联系人),教授,E-mail:phuang@njtech.edu.cn.
引用格式:韩宝军,吴海银,丁成成,等.高导热聚酰亚胺复合材料的性能[J].南京工业大学学报(自然科学版),2020,42(4):522-527.
HAN Baojun, WU Haiyin, DING Chengcheng, et al. Performance of high thermal conductivity polyimide composites[J].Journal of Nanjing Tech University(Natural Science Edition),2020,42(4):522-527..
更新日期/Last Update: 2020-07-30