|本期目录/Table of Contents|

[1]林艳,刘谢,陈志刚,等.Cu和Co掺杂介孔MnO2/膨胀石墨复合材料的合成及储锂性能[J].南京工业大学学报(自然科学版),2020,42(04):528-535.[doi:10.3969/j.issn.1671-7627.2020.04.012]
 LIN Yan,LIU Xie,CHEN Zhigang,et al.Synthesis of Cu and Co doped mesoporous MnO2/expanded graphite and its lithium-storage properties[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2020,42(04):528-535.[doi:10.3969/j.issn.1671-7627.2020.04.012]
点击复制

Cu和Co掺杂介孔MnO2/膨胀石墨复合材料的合成及储锂性能()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
42
期数:
2020年04期
页码:
528-535
栏目:
出版日期:
2020-07-17

文章信息/Info

Title:
Synthesis of Cu and Co doped mesoporous MnO2/expanded graphite and its lithium-storage properties
文章编号:
1671-7627(2020)04-0528-08
作者:
林艳刘谢陈志刚刘成宝陈丰吴正颖
苏州科技大学 化学生物与材料工程学院 江苏省环境功能材料重点实验室,江苏 苏州 215009
Author(s):
LIN Yan LIU Xie CHEN Zhigang LIU Chengbao CHEN Feng WU Zhengying
Jiangsu Key Laboratory for Environment Functional Materials, School of Chemistry, Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
关键词:
MnO2 锂离子电池 Cu掺杂 Co掺杂 膨胀石墨(EG)
Keywords:
manganese dioxide lithium ion battery copper-doping cobalt-doping expanded graphite
分类号:
TQ137,TM912
DOI:
10.3969/j.issn.1671-7627.2020.04.012
文献标志码:
A
摘要:
以介孔SiO2负载的膨胀石墨(EG)为硬模板,在复制模板介孔结构的过程中分别引入Cu和Co物种,制备Cu和Co掺杂的MnO2/EG复合材料。通过X线衍射仪(XRD)、N2吸附-脱附仪、扫描电子显微镜(SEM)、X线光电子能谱仪(XPS)、傅里叶变换红外光谱仪(FT-IR)、循环伏安以及恒流充放电测试表征复合材料的结构、形貌和储锂性能。结果表明:掺杂Cu和Co后的复合材料保留了介孔结构,但孔道规整性略有降低; Cu和Co主要以二价离子形态存在于材料中。当用作锂离子负极材料时,掺杂Cu和Co的复合材料表现出良好的电化学性能,经过100次循环后,依然分别保持了320和273 mA·h/g的比容量,高于未掺杂的复合材料(205 mA·h/g)。掺杂Cu的复合材料比掺杂Co的复合材料具有更高的比容量及更佳的循环稳定性。
Abstract:
Copper and cobalt doped manganese dioxide/expanded graphite(MnO2/EG)composites were synthesized using mesoporous silica-modified expanded graphite as a hard template. Copper and cobalt species were introduced into the structure during the replication process. Structures, morphologies and lithium-storage performance of the composites were characterized by X-ray diffraction(XRD), nitrogen adsorption-desorption, scanning electron microscope(SEM), X-ray photoelectron spectroscopy(XPS), Fourier transform infrared spectroscopy(FT-IR), and cyclic voltammetry and galvanostatic charge-discharge measurements. Results showed that mesoporous structure was preserved while pore ordering was slightly reduced for the composite after the copper and cobalt doping. Copper and cobalt existed in the composites as forms of Cu(II)and Co(II)ions. The copper and cobalt doped composites showed good electrochemical properties when they were used as anode materials in lithium-ion batteries. The composites preserved high specific capacities of 320 and 273 mA·h/g after 100 cycles, which were much higher than that of the undoped composite(205 mA·h/g). Moreover, the copper doped composite had higher capacity and better cycling stability than those of the cobalt doped one.

参考文献/References:

[1] ZHANG Z,HUANG Y,YAN J,et al.A facile synthesis of 3D flower-like NiCo2O4@MnO2 composites as an anode material for Li-ion batteries[J].Applied Surface Science,2019,473:266.
[2] YANG Y,HUANG X,XIANG Y,et al.Mn3O4 with different morphologies tuned through one-step electrochemical method for high-performance lithium-ion batteries anode[J].Journal of Alloys and Compounds,2019,771:335.
[3] 张小溪,马帅,梁凯,等.锂硫电池正极复合材料多壁碳纳米管@介孔碳/硫的制备与性能[J].南京工业大学学报(自然科学版),2018,40(2):41.
[4] VARGHESE S P,BABU B,PRASANNACHANDRAN R,et al.Enhanced electrochemical properties of Mn3O4/graphene nanocomposite as efficient anode material for lithium ion batteries[J].Journal of Alloys and Compounds,2019,780:588.
[5] ZENG S,ZHAO R,LI A,et al.MnO/carbon fibers prepared by an electrospinning method and their properties used as anodes for lithium ion batteries[J].Applied Surface Science,2019,463:211.
[6] 丁川,曾燕伟,曹亮亮,等.锂电池负极材料Fe3O4/C多孔纳米片的制备及其电化学性能[J].南京工业大学学报(自然科学版),2017,39(4):1.
[7] ZHANG W,ZHANG B,JIN H,et al.Waste eggshell as bio-template to synthesize high capacity δ-MnO2 nanoplatelets anode for lithium ion battery[J].Ceramics International,2018,44(16):20441.
[8] PEI X Y,MO D C,LYU S S,et al.Facile preparation of N-doped MnO/rGO composite as an anode material for high-performance lithium-ion batteries[J].Applied Surface Science,2019,465:470.
[9] HUANG H,SHI C,FANG R,et al.Bio-templated fabrication of MnO nanoparticles in SiOC matrix with lithium storage properties[J].Chemical Engineering Journal,2019,359:584.
[10] WEI C,ZHANG G,BAI Y,et al.Al-doped SnO2 hollow sphere as a novel anode material for lithium ion battery[J].Solid State Ionics,2015,272:133.
[11] 汪敏,杨猛,马立群,等.Ti掺杂对锂离子电池正极材料Li2FeSiO4结构及电化学性能影响[J].南京工业大学学报(自然科学版),2016,38(2):64.
[12] 刘扬,安立宝,龚亮.Fe掺杂石墨烯表面吸附Au:第一性原理[J].南京工业大学学报(自然科学版),2018,40(3):109.
[13] NAM K M,CHOI Y C,JUNG S C,et al.[100] directed Cu-doped h-CoO nanorods:elucidation of the growth mechanism and application to lithium-ion batteries[J].Nanoscale,2012,4(2):473.
[14] KASHALE A A,RASAL A S,KAMBLE G P,et al.Biosynthesized Co-doped TiO2 nanoparticles based anode for lithium-ion battery application and investigating the influence of dopant concentrations on its performance[J].Composites Part B,2019,167:44.
[15] KLEITZ F,HEI-CHOI S,RYOO R.Cubic Ia3d large mesoporous silica:synthesis and replication to platinum nanowires,carbon nanorods and carbon nanotubes[J].Chemical Communications,2003(17):2136.
[16] BAI B,QIAO Q,LI Y,et al.Effect of pore size in mesoporous MnO2 prepared by KIT-6 aged at different temperatures on ethanol catalytic oxidation[J].Chinese Journal of Catalysis,2018,39(4):630.
[17] WANG S,XU S,LIU C,et al.Characterization and adsorption behaviors of a novel synthesized mesoporous silica coated carbon composite[J].Chinese Journal of Chemical Engineering,2016,24(1):190.
[18] BAI B,QIAO Q,ARANDIYAN H,et al.Three-dimensional ordered mesoporous MnO2-supported Ag nanoparticles for catalytic removal of formaldehyde[J].Environmental Science & Technology,2016,50(5):2635.
[19] HUANG R,LIU Y,CHEN Z,et al.Fe-species-loaded mesoporous MnO2 superstructural requirements for enhanced catalysis[J].ACS Applied Materials & Interfaces,2015,7(7):3949.
[20] WU Z,LIN Y,CUI R,et al.Hydrothermal synthesis of mesoporous KIT-6/expanded graphite composite for effective removal of methylene blue[J].Science of Advanced Materials,2018,9:1.
[21] ZHAI X,MAO Z,ZHAO G,et al.Nanoflake δ-MnO2 deposited on carbon nanotubes-graphene-Ni foam scaffolds as self-standing three-dimensional porous anodes for high-rate-performance lithium-ion batteries[J].Journal of Power Sources,2018,402:373.
[22] BAI X,TONG X,GAO Y,et al.Hierarchical multidimensional MnO2 via hydrothermal synthesis for high performance supercapacitors[J].Electrochimica Acta,2018,281:525.
[23] LUO W,HU X,SUN Y,et al.Controlled synthesis of mesoporous MnO/C networks by microwave irradiation and their enhanced lithium-storage properties[J].ACS Applied Materials & Interfaces,2013,5(6):1997.
[24] SEVERINO F,BRITO J L,LAINE J,et al.Nature of copper active sites in the carbon monoxide oxidation on CuAl2O4 and CuCr2O4 spinel type catalysts[J].Journal of Catalysis,1998,177:82.
[25] HUANG W,ZUO Z,HAN P,et al.XPS and XRD investigation of Co/Pd/TiO2 catalysts by different preparation methods[J].Journal of Electron Spectroscopy and Related Phenomena,2009,173(2/3):88.
[26] HU Z M,XIAO X,HUANG L,et al.2D vanadium doped manganese dioxides nanosheets for pseudocapacitive energy storage[J].Nanoscale,2015,7(38):16094.
[27] LI X,LI D,WEI Z,et al.Interconnected MnO2 nanoflakes supported by 3D nanostructured stainless steel plates for lithium ion battery anodes[J].Electrochimica Acta,2014,121:415.
[28] LIU H,HU Z,SU Y,et al.MnO2 nanorods/3D-rGO composite as high performance anode materials for Li-ion batteries[J].Applied Surface Science,2017,392:777.
[29] HU S,SONG Y,YUAN S,et al.A hierarchical structure of carbon-coated Li3VO4 nanoparticles embedded in expanded graphite for high performance lithium ion battery[J].Journal of Power Sources,2016,303:333.

相似文献/References:

[1]安立宝,董帅.碳纳米管掺杂及其应用技术研究进展[J].南京工业大学学报(自然科学版),2019,41(03):395.[doi:10.3969/j.issn.1671-7627.2019.03.019]
 AN Libao,DONG Shuai.Progress on carbon nanotube doping and its applications[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2019,41(04):395.[doi:10.3969/j.issn.1671-7627.2019.03.019]

备注/Memo

备注/Memo:
收稿日期:2019-03-21
基金项目:苏州市科技发展计划(SYG201818); 教育部资源化学国际合作联合实验室开放课题; 江苏省研究生培养创新工程(KYCX17_2064)
作者简介:林艳(1993—),女,E-mail:yan_lin_0407@qq.com; 吴正颖(联系人),副教授,E-mail:zywu@mail.usts.edu.cn.
引用格式:林艳,刘谢,陈志刚,等.Cu和Co掺杂介孔MnO2/膨胀石墨复合材料的合成及储锂性能[J].南京工业大学学报(自然科学版),2020,42(4):528-535.
LIN Yan, LIU Xie, CHEN Zhigang, et al. Synthesis of Cu and Co doped mesoporous MnO2/expanded graphite and its lithium-storage properties[J].Journal of Nanjing Tech University(Natural Science Edition),2020,42(4):528-535..
更新日期/Last Update: 2020-07-30