|本期目录/Table of Contents|

[1]陈志林,王俊.GFRP-微珠泡沫组合柱抗车辆撞击仿真与优化设计[J].南京工业大学学报(自然科学版),2020,42(05):642-648.[doi:10.3969/j.issn.1671-7627.2020.05.013]
 CHEN Zhilin,WANG Jun.Simulation and optimized design of vehicle impact resistance of GFRP-syntactic foam composite column[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2020,42(05):642-648.[doi:10.3969/j.issn.1671-7627.2020.05.013]
点击复制

GFRP-微珠泡沫组合柱抗车辆撞击仿真与优化设计()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
42
期数:
2020年05期
页码:
642-648
栏目:
出版日期:
2020-09-20

文章信息/Info

Title:
Simulation and optimized design of vehicle impact resistance of GFRP-syntactic foam composite column
文章编号:
1671-7627(2020)05-0642-07
作者:
陈志林王俊
南京工业大学 土木工程学院,江苏 南京 211800
Author(s):
CHEN Zhilin WANG Jun
College of Civil Engineering, Nanjing Tech University, Nanjing 211800, China
关键词:
抗撞桥墩 玻璃纤维增强复合材料(GFRP) 微珠泡沫 组合柱 吸能能力
Keywords:
anti-collision pier glass fiber reinforced polymer(GFRP) syntactic foam composite column energy absorption capacity
分类号:
TU398+.1
DOI:
10.3969/j.issn.1671-7627.2020.05.013
文献标志码:
A
摘要:
近年来,国内外桥梁碰撞事故频繁发生,对桥墩造成破坏甚至导致桥梁垮塌,造成人员伤亡及经济损失。本文以玻璃纤维增强复合材料(GFRP)-混凝土组合柱为参照柱,在满足GFRP-微珠泡沫组合柱吸能不小于参照柱的条件下,对其进行精细化模拟及优化设计。结果表明:优化后的GFRP-微珠泡沫组合柱不仅具有与GFRP-混凝土组合柱同样的吸能能力,还可以大幅削减冲击力峰值,提高冲击持续时间和比吸能,降低对撞击车船和人身的损害,达到轻质高强、吸能能力强的效果。
Abstract:
The accidents due to collision in bridge piers occur frequently, which leads to the damage of bridge piers and even the collapse of bridges, resulting in casualties and economic losses. Glass fiber reinforced polymer(GFRP)-syntactic foam composite column was simulated and optimized by taking GFRP-concrete column as the reference column, under the condition that its energy absorption was no less than that of the reference column. It revealed that the optimized GFRP-syntactic foam composite column not only had the same energy absorption capacity as the GFRP-concrete column, but also reduced the peak force of impact and increased the impact duration and specific energy absorption. Optimized GFRP-syntactic foam column achieved the effect of light weight, high strength and high energy absorption ability, and reduced the damage of the impact.

参考文献/References:

[1] 邓国良,邢永辉,华鹏,等.南昌大桥桥墩抗浮运管段撞击复合材料防撞系统结构设计[J].玻璃钢/复合材料,2017(10):29.
[2] AFOLABI L O,MUTALIB N A A,ARIFF Z M.Fabrication and characterization of two-phase syntactic foam using vacuum assisted mould filling technique[J].Journal of Materials Research and Technology,2019,8(5):3843.
[3] 潘鹏举,单国荣,黄志明,等.空心玻璃微珠填充环氧树脂复合材料压缩性能研究[J].中国塑料,2004,18(8):78.
[4] AMITH KUMAR S J,SABEEL AHMED K.Effects of ageing on mechanical properties of stiffened syntactic foam core sandwich composites for marine applications[J].Journal of Cellular Plastics,2016,52(5):503.
[5] CAROLAN D,MAYALL A,DEAR J P,et al.Micromechanical modelling of syntactic foam[J].Composites Part B(Engineering),2020,183:107701.
[6] MANOJ-PRABHAKAR M,RAJINI N,AYRILMIS N,et al.An overview of burst,buckling,durability and corrosion analysis of lightweight FRP composite pipes and their applicability[J].Composite Structures,2019,230:111419.
[7] 何文涛,王俊,刘伟庆,等.GFRP-微珠泡沫组合柱轴压试验研究[J].玻璃钢/复合材料,2017(7):55.
[8] GAURAV A,SINGH K K.Fatigue behavior of FRP composites and CNT-Embedded FRP composites:a review[J].Polymer Composites,2018,39(6):1785.
[9] PARGHI A,ALAM M S.A review on the application of sprayed-FRP composites for strengthening of concrete and masonry structures in the construction sector[J].Composite Structures,2018,187:518.
[10] ALSAADI A U,ARAVINTHAN T,LOKUGE W.Structural applications of fibre reinforced polymer(FRP)composite tubes:a review of columns members[J].Composite Structures,2018,204:513.
[11] RAJAK D K,PAGAR D D,MENEZES P L,et al.Fiber-reinforced polymer composites:manufacturing,properties,and applications[J].Polymers,2019,11(10):1667.
[12] 卢子兴.复合泡沫塑料力学行为的研究综述[J].力学进展,2004,34(3):341.
[13] BROWN J A,CARROLL J D,HUDDLESTON B,et al.A multiscale study of damage in elastomeric syntactic foams[J].Journal of Materials Science,2018,53(14):10479.
[14] KIM H S,OH H H.Manufacturing and impact behavior of syntactic foam[J].Journal of Applied Polymer Science,2000,76(8):1324.
[15] WANG J,GANGARAO H V S,LI M T,et al.Axial behavior of columns with glass fiber-reinforced polymer composite shells and syntactic foam core[J].Journal of Composites for Construction,2019,23(2):04018083.
[16] 耿波,王君杰,汪宏,等.桥梁船撞风险评估系统总体研究[J].土木工程学报,2007,40(5):34.
[17] CONSOLAZIO G R,DAVIDSON M T,COWAN D R.Barge bow force-deformation relationships for barge-bridge collision analysis[J].Journal of the Transportation Research Board,2009,2131(1):3.
[18] 王君杰,陈诚,汪宏,等.基于碰撞数值模拟的桥梁等效静力船撞力基本公式[J].公路交通技术,2009,25(2):66.
[19] 方海,钱长根,刘伟庆,等.株洲湘江一桥桥墩抗船撞能力评估及防撞方案研究[J].桥梁建设,2014,44(2):20.
[20] 邓国良,邓建新,黄家成,等.南昌大桥桥墩抗浮运管段撞击能力评估及复合材料防撞设计[J].南京工业大学学报(自然科学版),2017,39(5):115.
[21] 冒一锋,刘伟庆,方海,等.乌龙江大桥船撞力及复合材料防撞系统研究[J].公路工程,2015,40(4):28.
[22] 吴志敏,刘伟庆,方海,等.广深高速(沿江)大桥复合材料防撞结构准静态压缩吸能试验研究[J].公路,2014,59(10):37.
[23] JIANG H,CHORZEPA M G.Evaluation of a new FRP fender system for bridge pier protection against vessel collision[J].Journal of Bridge Engineering,2015,20(2):05014010.
[24] MURRAY Y D.User’s manual for LS-DYNA concrete material model 159 [R].Mclean:Federal Highway Administration,2007.
[25] TSAI S W,WU E M.A general theory of strength for anisotropic materials[J].Journal of Composite Materials,1971,5(1):58.
[26] 杨世文,许小健.MATLAB优化工具箱在结构优化设计中的应用[J].科学技术与工程,2008,8(5):1347.
[27] 李瑞,芮延年.基于MATLAB的某型号传动轴的可靠性优化设计[J].苏州大学学报(工科版),2011,31(1):64.
[28] FU S Y,XU G S,MAI Y.On the elastic modulus of hybrid particle/short-fiber/polymer composites[J].Composites Part B(Engineering),2002,33(4):291.

备注/Memo

备注/Memo:
收稿日期:2020-03-04
基金项目:国家自然科学基金(51578283); 南京市建委科研项目(Ks2008,Ks2025)
作者简介:陈志林(1996—),男,E-mail:chenzhilin0211@163.com; 王俊(联系人),教授,E-mail:wangjun3312@njtech.edu.cn.
引用格式:陈志林,王俊.GFRP-微珠泡沫组合柱抗车辆撞击仿真与优化设计[J].南京工业大学学报(自然科学版),2020,42(5):642-648.
CHEN Zhilin, WANG Jun. Simulation and optimized design of vehicle impact resistance of GFRP-syntactic foam composite column[J].Journal of Nanjing Tech University(Natural Science Edition),2020,42(5):642-648..
更新日期/Last Update: 2020-09-24