|本期目录/Table of Contents|

[1]冯涛,杨谋存,朱跃钊.基于TRNSYS软件多能互补耦合系统的模拟分析[J].南京工业大学学报(自然科学版),2020,42(05):649-655.[doi:10.3969/j.issn.1671-7627.2020.05.014]
 FEGN Tao,YANG Moucun,ZHU Yuezhao.Simulation and analysis of multi-energy complementary coupling system based on TRNSYS software[J].Journal of NANJING TECH UNIVERSITY(NATURAL SCIENCE EDITION),2020,42(05):649-655.[doi:10.3969/j.issn.1671-7627.2020.05.014]
点击复制

基于TRNSYS软件多能互补耦合系统的模拟分析()
分享到:

《南京工业大学学报(自然科学版)》[ISSN:1671-7627/CN:32-1670/N]

卷:
42
期数:
2020年05期
页码:
649-655
栏目:
出版日期:
2020-09-20

文章信息/Info

Title:
Simulation and analysis of multi-energy complementary coupling system based on TRNSYS software
文章编号:
1671-7627(2020)05-0649-07
作者:
冯涛杨谋存朱跃钊
南京工业大学 机械与动力工程学院,江苏 南京 211800
Author(s):
FEGN Tao YANG Moucun ZHU Yuezhao
School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211800, China
关键词:
多能互补耦合系统 TRNSYS软件 全年最小能耗 能效比(COP) 总造价
Keywords:
multi-energy complementary coupling system TRNSYS software minimum energy consumption of year-round energy efficiency ration(COP) total cost
分类号:
TB383
DOI:
10.3969/j.issn.1671-7627.2020.05.014
文献标志码:
A
摘要:
多能互补耦合系统是未来能源供应的主要形式,其核心在于因地制宜建立最小能耗组合不同的可再生能源,使得各种能源间优劣互补、相辅相成。本文基于TRNSYS软件对南京地区某科研楼的多能互补耦合示范项目进行模拟,得到太阳能-地源热泵-水源热泵-空气源热泵多能互补耦合系统,全天候保证科研楼的供暖和制冷需求,维持55~70 ℃的热水供应。系统的全年最小能耗为125 MW·h,能效比(COP)约为3。系统的总造价为31.89万元,运行约2年即可回归成本,具有良好的经济效益。
Abstract:
Multi-energy complementary coupling system is the main form of energy supply in the future. Its core lies in the establishment of renewable energy systems with different combinations of minimum energy consumption according to local conditions, which makes the advantages and disadvantages of various energy complement between each other. The simulated multi-energy complementary coupling system of a scientific research building based on TRNSYS software was presented with the solar energy, ground source heat pump, water source heat pump and air source heat pump multi-energy complementary coupling system, which ensured the heating and cooling requirements of the scientific research building all day long, and maintained the hot water supply temperature of 55-70 ℃. The minimum energy consumption of the system of year-round was 125 MW·h, and the energy efficiency ratio(COP)was about 3. The total cost of the system was 318 900 yuan, which could be returned to cost after two years of operation, and had good economic benefits.

参考文献/References:

[1] 周静远.可再生能源技术在建筑运用及创新的研究[J].建设科技,2018(2):66.
[2] 唐安民.城市污水源热泵在建筑节能中的应用[J].供热制冷,2017(11):24.
[3] CHWIEDUK D A.Towards modern options of energy conservation in buildings[J].Renewable Energy,2017,10(11):194.
[4] 宋孝春,张亚立,劳逸民,等.北京奥运村再生水热泵冷热源系统设计[J].暖通空调,2017,47(1):74.
[5] 叶祖达.中国城市迈向近零碳排放与正气候发展模式[J].城市发展研究,2017,24(4):22.
[6] 艾芊,郝然.多能互补、集成优化能源系统关键技术及挑战[J].电力系统自动化,2018,42(4):2.
[7] 杨经纬,张宁,王毅,等.面向可再生能源消纳的多能源系统:述评与展望[J].电力系统自动化,2018,42(4):11.
[8] 高芳,张静.多能互补耦合供能系统在城市化建设中的应用[J].低碳世界,2011(6):14.
[9] 李刚,王晓东,邓广义.区域级综合能源系统多能耦合优化研究[J].南方能源建设,2017,4(2):24.
[10] 吴宏伟,赵永,吴伟伟.基于TRNSYS的某办公建筑负荷计算示例分析[J].山西建筑,2015,41(12):115.
[11] 王德闯,刘学来,李永安.太阳能系统在农村建筑中的应用分析[J].低温建筑技术,2018,40(9):126.
[12] 姚盼.太阳能热水系统优化及适宜性研究[D].成都:西南交通大学,2016.
[13] ALLY M R,MUNK J D,BAXTER V D,et al.Exergy analysis and operational efficiency of a horizontal ground-source heat pump system operated in a low-energy test house under simulated occupancy conditions[J].International Journal of Refrigeration,2012,35(4):1092.
[14] 智超英,赵宇含.地源热泵与太阳能联合供热系统集热器面积优化的研究[J].建筑节能,2018,46(1):27.
[15] 侯隆澍,刘幼农,尹泽开.重庆市地表水源热泵系统运行性能研究[J].建设科技,2018(17):14.
[16] LI B,WILD P,ROWE A.Performance of a heat recovery ventilator coupled with an air-to-air heat pump for residential suites in Canadian cities[J].Journal of Building Engineering,2019,21:343.
[17] CAO C H,LI H X,FENG G H,et al.Research on PV/T-air source heat pump integrated heating system in severe cold region[J].Procedia Engineering,2016,146:410.
[18] AMIRIRAD A,KUMAR R.Experimental and simulation studies on air source heat pump water heater for year-round applications in Canada[J].Energy and Buildings,2018,165:141.
[19] 邱留良.基于TRNSYS的分布式能源系统运行模拟及优化分析[D].上海:上海电力学院,2017.
[20] 陈小雁.新型太阳能热水站与太阳能制冷空调综合系统设计探讨[J].制冷,2011,30(3):42.
[21] 李旭.浅谈建筑节能对工程造价的影响及其造价控制方法[J].民营科技,2018(11):177.

备注/Memo

备注/Memo:
收稿日期:2018-12-15
基金项目:江苏省“六大人才高峰”(XNY-028); 国家重点研发计划(2018YFB1502900)
作者简介:冯涛(1993—),男,E-mail:1511682520@qq.com; 杨谋存(联系人),教授,E-mail:young_2004@njtech.edu.cn.
引用格式:冯涛,杨谋存,朱跃钊.基于TRNSYS软件多能互补耦合系统的模拟分析[J].南京工业大学学报(自然科学版),2020,42(5):649-655.
FEGN Tao, YANG Moucun, ZHU Yuezhao. Simulation and analysis of multi-energy complementary coupling system based on TRNSYS software[J].Journal of Nanjing Tech University(Natural Science Edition),2020,42(5):649-655..
更新日期/Last Update: 2020-09-24